Advertisement

Letters in Mathematical Physics

, Volume 3, Issue 4, pp 335–341 | Cite as

On ruelle's ξ-function for exponentially decreasing potentials

  • D. H. Mayer
Article
  • 35 Downloads

Abstract

We show that Ruelle's generalised ξ-function for a classical one-dimensional lattice spin system with two-body interaction φ(i)∼ exp(-γiβ)a(i) with β>1 extends to a meromorphic function in the whole complex plane.

Keywords

Statistical Physic Group Theory Complex Plane Meromorphic Function Spin System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruelle, D., in International Symposium on Mathematical Problems in Theoretical Physics,Lecture Notes in Physics 39, 449–457 (1975).Google Scholar
  2. 2.
    RuelleD.,Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978, p. 93.Google Scholar
  3. 3.
    ViswanathanK.S., ‘Statistical Mechanics of a One-dimensional Lattice Gas with Exponential Polynomial Interactions’,Comm. Math. Phys. 47, 131–141 (1976).Google Scholar
  4. 4.
    MayerD.H., ‘The Transfer Matrix of a One-sided Subshift of Finite Type with Exponential Interactions’,Lett. Math. Phys. 1, 335–343 (1976).Google Scholar
  5. 5.
    RuelleD.,Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978, p. 93.Google Scholar
  6. 6.
    Mayer, D.H., ‘On Composition Operators on Banach Spaces of Holomorphic Functions’, to appear inJ. Funct. Analysis.Google Scholar
  7. 7.
    Grothendieck, A., ‘Produits Tensoriels Topologiques et Espaces Nucleaires’,Mem. Am. Math. Soc. 16, Providence, R. I., (1955).Google Scholar
  8. 8.
    GrothendieckA., ‘La Theorie de Fredholm’,Bull. Soc. Math. France 84, 319–384 (1956).Google Scholar
  9. 9.
    Mayer, D.H., ‘Spectral Properties of Certain Composition Operators Arising in Statistical Mechanics’, Aachen Preprint (1978),Commun. Math. Phys., to appear.Google Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • D. H. Mayer
    • 1
  1. 1.Institut für Theoretische PhysikRWTH AachenAachenFed. Rep. Germany

Personalised recommendations