Advertisement

Geologische Rundschau

, Volume 71, Issue 3, pp 1077–1104 | Cite as

Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements

  • E. T. Tozer
Aufsätze

Abstract

The distribution of marine Triassic invertebrate faunas in North America is reviewed to recognize forms that may have paleolatitudinal significance.

Marine Triassic occurs on the North American Plate over a latitudinal spread of 46 degrees, from California to Ellesmere Island. At some intervals of time faunas on the Plate permit the discrimination of two or three provinces with distinctively different coeval faunas. The faunal differences are evidently related to paleolatitude and the provinces are designated LPL, MPL, HPL (low, mid, high paleolatitude). Nevada provides the diagnostic characters of the LPL province; northeastern British Columbia the MPL; the Sverdrup Basin the HPL. In the Lower Triassic and early Middle Triassic (Anisian) the distinction between the MPL and HPL provinces cannot be made. All three provinces are recognized in the Ladinian, Carnian and Norian deposits.

In the western tracts of the Cordillera, the part formed of suspect terranes, apparently allochthonous with respect to the North American Plate, marine faunas are known all the way from southern Alaska and Yukon to Mexico. Lower and Upper Triassic faunas from these terranes, including some which today are at 63 degrees north, have the characters of the LPL province. Middle Triassic faunas from the terranes, as presently known, do not contribute significant data. In the terranes of the Western Cordillera LPL faunas are now up to 3000 km north of their counterparts on the American Plate. Tectonic displacement of this order is indicated.

Taking into account the faunas and the nature of the rocks, the Triassic palaeogeography is interpreted as: a tectonically quiet west shore for the North American Plate, bordered by an open sea or ocean; then, well off-shore, a series of volcanic archipelagos shedding sediment into adjacent basins. Some were fringed or intermittently covered by coralline shoals and carbonate banks. Deeper basins were in between. The islands probably were within 30 degrees of the Triassic equator and extended offshore for about 5000 km, to the spreading ridge directly ancestral to the East Pacific Rise. The geography west of the spreading ridge was probably comparable.

Jurassic and later generation of crust at the ridge has driven some of the islands into the North American Plate; some probably to South America; others have gone west to Asia. Evidence is given that northern New Guinea, New Caledonia and New Zealand may have been at a north latitude of 30 degrees or more in the Triassic.

The terranes now forming the Western Cordillera had probably amalgamated, and reached the North American Plate, before the end of the Jurassic.

Keywords

Middle Triassic Lower Triassic Spreading Ridge North American Plate Western Cordillera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Die Verbreitung der marinen Invertebratenfaunen der Trias Nordamerikas wird im Hinblick auf Aussagen zur Paläolatitude durchgesehen.

Marine Trias gibt es auf der Nordamerikanischen Platte über 46 Breitengrade von Californien bis nach Ellesmere Island. Für einige Zeitabschnitte lassen sich zwei bis drei unterschiedliche Faunenprovinzen gegeneinander abgrenzen. Die Unterschiede in den Faunen sind offensichtlich an die Paläolatitude geknüpft. Sie werden als LPL, MPL, HPL (niedere, mittlere, höhere Paläolatitude) bezeichnet. Nevada liefert die diagnostischen Merkmale der niederen; das nordöstlich British Columbia die der mittleren und das Sverdrup Becken die der höheren Paläolatitude. Eine Unterscheidung zwischen den Provinzen der mittleren und der höheren Paläolatituden läßt sich für die Untertrias und tiefere Mitteltrias (Anis) nicht treffen. Jedoch lassen sich in den Ablagerungen des Ladin, Kam und Nor alle drei Provinzen erkennen.

In den westlichen Zügen der Cordilleren sind marine Faunen vom südlichen Alaska und Yukon bis nach Mexico aus den bezüglich der Nordamerikanischen Platten offensichtlich allochthonen Teilen bekannt. Unter- und obertriadische Faunen dieser Gebiete so wie einige, die heute bis 63° Nord liegen besitzen die Charakterzüge der niederen Paläobreiten. Mitteltriadische Faunen dieser Zonen liefern, soweit bekannt, keine wesentlichen Daten. In den westlichen Cordilleren finden sich die Faunen der niederen Paläobreiten bis zu 3000 km nördlich ihrer Gegenstücke auf der Amerikanischen Platte. Damit wird eine tektonische Verschiebung dieser Größenordnung angezeigt.

Betrachtet man die Faunen und die Art der Sedimente, dann läßt sich die Paläogeographie der Trias wie folgt interpretieren: eine tektonisch ruhige Westküste der Nordamerikanischen Platte, die an ein offenes Meer grenzte; im küstenferneren Gebiet lieferte eine Serie vulkanischer Archipele Sediment in die angrenzenden Becken. Einige waren gesäumt oder zeitweise bedeckt von korallenführenden Watten und Karbonatbanken. Tiefere Becken lagen dazwischen. Die Inseln lagen wahrscheinlich innerhalb 30° nahe dem triadischen Äquator. Sie zogen sich von der Küste weg bis etwa 5000 km Entfernung zum Vorläufer des Ostpazifischen Rückens. Die geographische Situation westlich des Rückens sah vermutlich ähnlich aus.

Jurassische und spätere Generationen der Kruste aus der Nähe des Rückens haben einige der Inseln in die Nordamerikanische Platte eingebracht; einige wahrscheinlich nach Südamerika; andere sind nach Westen, nach Asien gedriftet. Es gibt Anzeichen dafür, daß Neuguinea, Neukaledonien und Neuseeland zur Triaszeit auf einer nördlichen Breite von 30° oder mehr gelegen haben.

Die Züge, die heute die westlichen Cordilleren bilden, waren wahrscheinlich zusammengeschweißt und haben die Nordamerikanische Platte vor Ende der Jurazeit erreicht.

Résumé

La distribution des faunes d'invertébrés marins du Triasique dans l'Amérique du Nord est passée en revue afin de reconnaître les formes qui peuvent avoir une signification pour les latitudes du passé.

Le Triasique marin existe sur la plaque de l'Amérique du Nord sur 46, degré de latitude, de la Californie à l'Ile d'Ellesmere. A certains intervalles de temps, des faunes permettent la distinction de 2 ou 3 provinces à partir de faunes contemporaines nettement différentes. Les différences de faunes se montrent en relation évidente avec la paléolatitude, et les provinces sont désignées LPL, MPL, HPL (base, moyenne, haute paléolatitude). Le Nevada fournit la diagnose de la province LPL; le NE de la Colombie britanique, le MPL; le bassin de Sverdrup, le HPL. Dans le Triasique inférieur et le début du Triasique moyen (Anisian), la distinction ne peut être faite entre provinces MPL et HPL. Les 3 provinces sont chacune reconnues au Ladinien, au Carnien ent au Norien.

Dans les aires occidentales de la Cordillère, dans la partie formée de terrains apparemment allochtones par rapport à la plaque de l'Amérique du Nord, des faunes marines sont connues depuis l'Alaska méridional et le Yukon jusqu'au Mexique. Des faunes du Trias inférieur et Supérieur de ces terrains, y compris certaines qui aujourd'hui se trouvent à 63° N, ont les caractères de la province LPL. Des faunes du Triasique moyen de ces terrains, à présent connues, n'apportent pas de données significatives. Dans les terrains de la Cordillère occidentale, des faunes LPL sont connues actuellement jusqu'à 3000 km. au nord de leurs correspondants sur la plaque américaine, indiquant un déplacement tectoniue de cet ordre.

Prenant en considération les faunes et la nature des roches, la paléogeographie du Triasique est interprétée comme suit: un rivage occidental tectoniquement calme pour la plaque de l'Amérique du Nord, bordée par une mer ouverte ou un océan; ensuite, à l'écart de ce rivage, une série d'archipels volcaniques distribuant des sédiments dans les bassins adjacents. Les îles étaient probablement dans un espace de 30° à partir de l'équateur triasique, et s'étendaient au delà du rivage sur environ 5000 km. jusqu'à la ride d'expansion qui fut l'ancêtre direct de l'East Pacific Rise. La géographie à l'ouest de la ride d'expansion était probablement comparable.

La croûte engendrée au Jurassique et plus tard à partir de cette ride a entraîné certaines de ces iles volcaniques dans la plaque de l'Amérique du Nord; certaines probablement jusqu'à l'Amérique du Sud; d'autres s'en sont allées vers l'ouest vers l'Asie. Des faits montrent que le Nord de la Nouvelle Guinée, la Nouvelle Calédonie et la Nouvelle Zélande peuvent s'être trouvées à une latitude nord de 30° et plus au Triasique.

Les terrains formant actuellement l'ouest de la Cordillère s'étaient probablement réunis et avaient atteint la plaque de l'Amérique du Nord avant la fin du Jurassique.

Краткое содержание

Рассмотрено распост ранение морских бесп озвоночных в различных палеоширо тах северной Америки в тр иасе.

Морские отложения тр иаса на североамерик анской платформе простираю тся на более, чем 46 широтны х градуса от Калифорни и до островов моря Эллис. для некоторых отрезк ов времени можно разг раничить от двух до трех различны х провинций фауны. Разл ичия в фауне явно связ аны с палеоширотой. Их именуют низкие, сре дние и высокие палеош ироты (LPL, MPL, HPL). В Неваде находят отлич ительные признаки ни зких широт; северовосточная британская Колумбия относится к средним, а бассейн Свердрупа — к высоким палеоширотам. Различ ия между провинциями средних и вы с окихпалеоширот и нижнем триаса и сред нем триаса (анисийски й век) не установлено. Зато в отложениях ладинско го, карнского и новийс кого веков отм е чены все три пров инции.

Морская фауна, известная в Кор дильерах от южной Аля ски и Юкона до Мексики, в основном ал лохтонового происхо ждения. Фауна верхного и нижн его триаса этих регионов, как и некоторые район ы, расположенные сегод ня до 63° северной широты, н есут черты фауны низк их палеоширот. Среднетр иасовая фауна этих зон не дает, поскольку известно, н икаких важных разультатов. В западных Кордильер ах находят фауну низк их палеоширот до 3000 км севернее ее эквивале нта на африканской пл атформе. Это указывает на тектони ческое смещение такого же по рядка.

Рассматривая фауну и тип осадочных пород м ожно интерпретировать па леогеографию триаса следующим обр азом: тектонически сп окойное западное побережье североаме риканской плиты, прил егающее к открытому морю; В обла стях, отдаленных от берега серия вулканических архипелагов поставляет седименты в прилегаю щие бассейны. Некотор ые из них обрамляются прибреж ной отмелью, или даже стан овятся ею, покрыпаемо й водой во время приливов, заливаемой. Между ним и находятся глубокие бассейны. Острова распалались, вероятно, от 30° широты, ближе к триасовому эк ватору. Они простираются от берега до примерно 5000 км к предшевственни к у восточной части хребта Тихого океана.

Географические соот ношения западнее от хребта выглядели, вероятно, т акже, как и в восточной части. Юрские и поздние поко ления коры из районов вблизи хребта образовали острова севроамерик анской плиты. Некотор ые из них дрейфовали, вероятно, к южной Америке, други е на запад, к Азии. Есть основания предполагать, что новая Гвинея, Нова я Каледония и Новая Зе ландия в Триасовый период располагалась на 30° се верной широты, или даж е выше. Внешний вид сегодняш них западных Кордиль ер североамериканской платформы возник, вероятно, в кон це юры.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, J. E.: Fort St. James map-area, Cassiar and Coast Districts, British Columbia. Geol. Surv. Canada Mem. 252, 1949.Google Scholar
  2. Berg, H. C.: Geology of Gravina Island, Alaska. U. S. Geol. Surv. Bull. 1373, 1973.Google Scholar
  3. Burchfiel, B. C.: Tectonics of noncollisional regimes. The modern Andes and the Mesozoic Cordilleran orogen of the western United States. In: Continental Tectonics, Studies in Geophysics, Nat. Acad. Sci. Washington: 65–72, 1980.Google Scholar
  4. Burckhardt, C.: Etude synthétique sur le Mésozoique mexicain. Mém. Soc. Pal. Suisse, 49 (4), 1930.Google Scholar
  5. Burke, D. B. &Silberling, N. J.: The Auld Land Syne Group, of Late Triassic and Jurassic (?) age, north-central Nevada. U. S. Geol. Surv. Bull. 1394 E, 1973.Google Scholar
  6. Cairnes, C. E.: Slocan mining camp, British Columbia. Geol. Surv. Canada Mem. 173, 1934.Google Scholar
  7. Cameron, B. E. B. &Monger, J. W. H.: Middle Triassic conodonts from the Fergusson Group, northeastern Pemberton map-area, British Columbia. Geol. Surv. Canada Pap. 71-1 B: 94–96, 1971.Google Scholar
  8. Chao, King-Koo: Lower Triassic ammonoids from western Kwangsi, China. Pal. Sinica, n. ser. B, 9, whole ser. 145, 1959.Google Scholar
  9. Churkin, M. Jr.: Western boundary of the North American continental plate in Asia. Geol. Soc. Amer. Bull. 83: 1027–1036, 1972.Google Scholar
  10. — &Trexler, J. H.: Continental plates and accreted oceanic terranes in the Arctic. In: “The Ocean Basins and Margins”, A. E. M. Nairn, M. Churkin Jr. & F. G. Stehli Eds., 5, The Arctic Ocean, Plenum Press, New York & London: 1–20, 1981.Google Scholar
  11. Clapp, C. H. &Shimer, H. W.: The Sutton Jurassic of the Vancouver Group, Vancouver Island. Proc. Boston Soc. Nat. Hist. 34 (12): 425–438, 1911.Google Scholar
  12. Coney, P. J., Jones, D. L. &Monger, J. W. H.: Cordilleran suspect terranes. Nature, 288: 328–333, 1980.Google Scholar
  13. Danner, W. T.: Limestone resources of southwestern British Columbia. Montana Bur. Mines & Geol., Special publ. 74: 171–185, 1976.Google Scholar
  14. Davis, G. A., Monger, J. W. H. &Burchfiel, B. C.: Mesozoic construction of the Cordilleran “ collage”, central British Columbia to central California. Pacific Coast Paleography symposium 2, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 1–32, 1978.Google Scholar
  15. De Cserna, G. A.: Fauna fósil de la Formación Santa Clara (Cárnico) del Estado de Sonora. Pal. Mexicana, 11 (3), 1961.Google Scholar
  16. Dickinson, W. R.: Paleozoic plate tectonics and the evolution of the Cordilleran continental margin. Pacific Coast Paleogeography symposium 1, Soc. Economic Paleontologists and Mineralogists, Los Angeles: 137–155, 1977.Google Scholar
  17. —: Mesozoic forearc basin in central Oregon, Geology, 7: 166–170, 1979.Google Scholar
  18. Diener, C.: The Trias of the Himalayas. Mem. Geol. Surv. India, 36 (3), 1912.Google Scholar
  19. Donovan, D. T.: History of the North Atlantic Ocean. Meddr. Grønland, 168 (3): 31–33, 1972.Google Scholar
  20. Eisbacher, G. H., Carrigy, M. A. &Campbell, R. B.: Paleodrainage patterns and lateorogenic basins of the Canadian Cordillera. Soc. Economic Paleontologists and Mineralogists, Spec. Pap. 22: 143–166, 1974.Google Scholar
  21. Eisbacher, G. H. &Gabrielse, H.: The molasse facies of the Columbian orogen. Geol. Rundschau, 64 (1): 85–100, 1975.Google Scholar
  22. Fabricius, F., Friedrichsen, H. &Jacobshagen, V.: Palaotemperaturen und Palaoklima in Obertrias und Lias der Alpen. Geol. Rundschau, 59 (2): 805–826, 1970.Google Scholar
  23. Finch, J. W. &Abbott, P. L.: Petrology of a Triassic marine section, Vizcaino Peninsula, Baja California Sur, Mexico. Sedimentary Geology, 19: 253–273, 1977.Google Scholar
  24. Freeland, G. L. &Dietz, R. S.: Rotation history of Alaskan tectonic blocks. Tectonophysics, 18: 379–389, 1973.Google Scholar
  25. Fujita, K.: Pre-Cenozoic tectonic evolution of northeast Siberia. J. Geol., 86: 159–172, 1978.Google Scholar
  26. Gabb, W. M.: Descriptions of some Secondary fossils from the Pacific States. Am. J. Conchology, 5: 5–18, 1870.Google Scholar
  27. Gabrielse, H.: McDame map-area, Cassiar District, British Columbia. Geol. Surv. Canada Mem. 319, 1963.Google Scholar
  28. Gansser, A.: Geology of the Himalayas. Interscience, London, New York, Sydney, 1964.Google Scholar
  29. Gibson, D. W.: Triassic rocks of the Rocky Mountain foothills and front ranges of north-eastern British Columbia and west-central Alberta. Geol. Surv. Canada Bull. 247, 1975.Google Scholar
  30. Grant-Mackie, J. A.: Mode of life and adaptive evolution in the cosmopolitan Triassic bivalveMonotis. J. Malacological Soc. Australia, 4 (4): 242–243, 1980.Google Scholar
  31. Gruber, B.: Neue Ergebnisse auf dem Gebiete der Ökologie, Stratigraphie und Phylogenie der Halobien (Bivalvia). Mitt. Ges. Geol. Bergbaust. Österreich, 23: 181–198, 1976.Google Scholar
  32. Hamilton, W.: Continental drift in Eastern Asia and Alaska. Tectonophysics, 4: 569, 1967.Google Scholar
  33. —: The Uralides and the motion of the Russian and Siberian platforms. Geol. Soc. Amer., Bull., 81: 2553–2576, 1970.Google Scholar
  34. —: Complexities of modern and ancient subduction zones. In: Continental Tectonics, Studies in Geophysics, Nat. Acad. Sci. Washington: 33–49, 1980.Google Scholar
  35. Hayami, I.: Notes on Mesozoic “planktonic” bivalves. J. Geol. Soc. Japan, 75 (7): 375–385, 1969.Google Scholar
  36. Hillhouse, J. W.: Paleomagnetism of the Triassic Nikolai greenstone, McCarthy quadrangle, Alaska. Canadian J. Earth Sci., 14: 2578–2592, 1977.Google Scholar
  37. Hillhouse, J. W. &Grommé, C. S.: Paleomagnetism of the Triassic Hound Island volcanics, Alexander terrane, southeastern Alaska. J. Geophysical Research, 85 (B 5): 2594–2602, 1980.Google Scholar
  38. Hughes, T.: The case for the creation of the north Pacific ocean during the Mesozoic era. Palaeogeography, Palaeoclimatology, Palaeoecology, 18: 1–43, 1975.Google Scholar
  39. Imlay, R. W. &Detterman, R. L.: Some Lower and Middle Jurassic beds in Puale Bay-Alinchak Bay area, Alaska Peninsula. Amer. Ass. Petrol. Geol. Bull., 61 (4): 607–611, 1977.Google Scholar
  40. Irving, E.: Drift of the major continental blocks since the Devonian. Nature, 270: 304–309, 1977.Google Scholar
  41. Jeletzky, J. A.: Mesozoic and? Tertiary rocks of Quatsino Sound, Vancouver Island, British Columbia. Geol. Surv. Canada Bull. 242, 1976.Google Scholar
  42. Jenkyns, H. C.: Tethys: past and present. Proc. Geologists' Ass., 91: 107–118, 1980.Google Scholar
  43. Jones, D. L. &Silberling, N. J.: Mesozoic stratigraphy — the key to tectonic analysis of southern and central Alaska. U. S. Geol. Surv., Open-file report 79–1200, 1979.Google Scholar
  44. Jones, D. L.,Silberling, N. J.,Csejtey, B.,Nelson, W. H. &Blome, C. D.: Age and structural significance of ophiolite and adjoining rocks in the Upper Chulitna District, south-central Alaska. U. S. Geol. Surv. Prof. Paper 1121-A, 1980.Google Scholar
  45. Jones, D. L., Silberling, N. J. &Hillhouse, J. W.: Wrangellia — a displaced terrane in northwestern North America. Canadian J. Earth Sci., 14: 2565–2577, 1977.Google Scholar
  46. King, P. B.: The evolution of North America, Revised edition, Princeton University Press, 1977.Google Scholar
  47. King, R. E.: Geological reconnaissance in northern Sierra Madre Occidental of Mexico. Geol. Soc. Amer. Bull., 50: 1625–1722, 1939.Google Scholar
  48. Kozur, H.: Faunenprovinzen in der Trias und ihre Bedeutung für die Klärung der Palaographie. Geol. Palaont. Mitt. Innsbruck, 3 (8): 1–41, 1973.Google Scholar
  49. Kristan-Tollmann, E. &Tollmann, A.: Die Stellung der Tethys in der Trias und die Herkunft ihrer Fauna. Mitt. österr. geol. Ges. 74/75: 129–135, 1981.Google Scholar
  50. Kuenzi, W. D.: Early Triassic (Scythian) ammonoids from northeastern Washington. J. Paleontol., 39: 365–378, 1965.Google Scholar
  51. Kummel, B.: Ammonoids of the late Scythian (Lower Triassic). Bull. Museum Comparative Zoology, 137 (3): 311–702, 1969.Google Scholar
  52. —: Lower Triassic (Scythian) molluscs. In: Atlas of palaeobiogeography, A. Hallam Ed., Elsevier, Amsterdam, London, New York: 225–233, 1973.Google Scholar
  53. Lees, E. J.: Geology of the Laberge area, Yukon. Trans. Royal Canadian Inst., 20 (1): 1–48, 1934.Google Scholar
  54. McGeary, S. E. &Ben-Avraham, Z.: Allochthonous terranes in Alaska: implications for the structure and evolution of the Bering Sea shelf. Geology, 9: 608–614, 1981.Google Scholar
  55. McLearn, F. H.: The Neo-TriassicCassianella fauna of Tyaughton Creek valley, B. C. Canadian Field-Naturalist, 56 (7): 99–103, 1942.Google Scholar
  56. Melville, R.: Continental drift, Mesozoic continents and the migrations of the Angiosperms. Nature, 211: 116–120, 1966.Google Scholar
  57. Monger, J. W. H.: The Triassic Takla Group in McConnell Creek map-area, north-central British Columbia. Geol. Surv. Canada Paper 76–29, 1977 a.Google Scholar
  58. —: Upper Paleozoic rocks of the western Canadian Cordillera and their bearing on Cordilleran evolution. Canadian J. Earth Sci., 14: 1832–1859, 1977 b.Google Scholar
  59. Monger, J. W. H. &Irving, E.: Northward displacement of north-central British Columbia. Nature, 285: 289–294, 1980.Google Scholar
  60. Monger, J. W. H. &Price, R. A.: Geodynamic evolution of the Canadian Cordillera — progress and problems. Canadian J. Earth Sci., 16: 770–791, 1979.Google Scholar
  61. Monger, J. W. H., Price, R. A. &Tempelman-Kluit, D.: Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology, 10: 70–75, 1982.Google Scholar
  62. Monger, J. W. H. &Ross, C. A.: Distribution of fusulinaceans in the western Canadian Cordillera. Canadian J. Earth Sci., 8: 259–278, 1971.Google Scholar
  63. Muffler, L. P. J.: Stratigraphy of the Keku Islets and neighbouring parts of Kuiu and Kupreanof Islands, southeastern Alaska. U. S. Geol. Surv., Bull. 1241-C, 1967.Google Scholar
  64. Muller, J. E.,Northcote, K. E. & Carlisle, D.: Geology and mineral deposits of Alert Bay-Cape Scott map-area, Vancouver Island, British Columbia. Geol. Surv. Canada Paper 74–8, 1974.Google Scholar
  65. Muller, S. W. &Ferguson, H. G.: Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada. Geol. Soc. Amer. Bull., 50: 1573–1624, 1939.Google Scholar
  66. Nichols, K. M. &Silberling, N. J.: Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Geol. Soc. Amer. Special Paper 178, 1977.Google Scholar
  67. - & -: Early Triassic (Smithian) ammonites of paleoequatorial affinity from the Chulitna terrane, south-central Alaska. U. S. Geol. Surv. Prof. Paper 1121-B, 1979.Google Scholar
  68. Nur, A. &Ben-Avraham, Z.: Lost Pacifica continent. Nature, 270: 41–43, 1977.Google Scholar
  69. — & —: Speculations on mountain building and the lost Pacific continent. J. Physics of the Earth, 26: S 21–37, 1978.Google Scholar
  70. Okulitch, A. V. &Cameron, B. E. B.: Stratigraphic revisions of the Nicola, Cache Creek and Mount Ida groups, based on conodont collections from the western margin of the Shuswap metamorphic complex, south-central British Columbia. Canadian J. Earth Sci., 13: 44–53, 1976.Google Scholar
  71. Orchard, M. J.: Triassic conodonts from the Cache Creek Group, Marble Canyon, southern British Columbia. Geol. Surv. Canada Paper 81-1 A: 357–359, 1981.Google Scholar
  72. Oldow, J. S.: Triassic Pamlico Formation: an allochthonous sequence of volcanogeniccarbonate rocks in west-central Nevada. Pacific Coast Paleogeography symposium 2, Society of Economic Paleontologists and Mineralogists, Los Angeles: 223–235, 1978.Google Scholar
  73. Panuska, B. C. &Stone, D. B.: Late Palaeozoic palaeomagnetic data for Wrangellia: resolution of the polarity ambiguity. Nature, 293: 561–563, 1981.Google Scholar
  74. Patton, W. W. &Dutro, J. T.: Preliminary report on the Paleozoic and Mesozoic sedimentary sequence on St. Lawrence Island, Alaska. U. S. Geol. Surv. Prof. Paper 650-D: 138–143, 1970.Google Scholar
  75. Petryk, A. A.: Mesozoic and Tertiary stratigraphy at Lake Hazen, northern Ellesmere Island. Geol. Surv. Canada Paper 68–17, 1969.Google Scholar
  76. Rangin, C.: Speculative model of Mesozoic geodynamics, central Baja California to northeastern Sonora (Mexico). Pacific Coast Paleogeography symposium 2. Society of Economic Paleontologists and Mineralogists Los Angeles: 85–106, 1978Google Scholar
  77. Sengor, A. M. C., Yilmaz, Y. &Ketin, I.: Remnants of a pre-Late Jurassic ocean in northern Turkey: fragments of Permian-Triassic paleotethys? Geol. Soc. Amer. Bull. 91: 599–609, 1980.Google Scholar
  78. Shields, O.: Evidence for initial opening of the Pacific Ocean in the Jurassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 26: 181–220, 1979.Google Scholar
  79. Silberling, N. J.: “Trachyceras Zone” in the Upper Triassic of the western United States. J. Paleontol., 30: 1147–1153, 1956.Google Scholar
  80. —: Stratigraphic distribution of Middle Triassic ammonites at Fossil Hill, Humboldt Range, Nevada. J. Paleontol., 36: 153–160, 1962.Google Scholar
  81. —: Biostratigraphy of marine Triassic in northern Alaska. American Assoc. Petroleum Geologists Bull. 54: 2504, 1970.Google Scholar
  82. —: Geologic events during Permian-Triassic time along the Pacific margin of the United States. Canadian Soc. Petrol. Geol. Mem. 4: 345–362, 1973.Google Scholar
  83. Silberling, N. J. &Roberts, R. J.: Pre-Tertiary stratigraphy and structure of north-western Nevada. Geol. Soc. Amer. Special Paper 72, 1962.Google Scholar
  84. Silberling, N. J. &Tozer, E. T.: Biostratigraphic classification of the marine Triassic in North America. Geol. Soc. Amer. Special Paper 110, 1968.Google Scholar
  85. Silberling, N. J &Wallace, R. E.: Stratigraphy of the Star Peak Group (Triassic) and overlying lower Mesozoic rocks Humboldt Range, Nevada, U. S. Geol. Surv. Prof. Paper 592, 1969.Google Scholar
  86. Skwarko, S. K.: Middle and Upper Triassic mollusca from Yuat River, eastern New Guinea. Bureau Mineral Resources, Geol. & Geophysics, Canberra, Bull. 126: 27–50, 1973.Google Scholar
  87. Smith, J. P.: Upper Triassic marine invertebrate faunas of North America. U. S. Geol. Surv. Prof. Paper 141, 1927.Google Scholar
  88. -: Lower Triassic ammonoids of North America. U. S. Geol. Surv., Prof. Paper 167, 1932.Google Scholar
  89. Souther, J. G.: Volcanism and tectonic environments in the Canadian Cordillera — a second look. Geol. Ass. Canada Special Paper 16: 3–24, 1977.Google Scholar
  90. Speed, R. C.: Collided Paleozoic microplate in the western United States. J. Geol., 87: 279–292, 1979.Google Scholar
  91. Stanley, G. D.: Paleoecology, structure and distribution of Triassic coral buildups in western North America. Univ. Kansas Paleont. Contribution 5, 1979.Google Scholar
  92. —: Early history of scleractinian corals and its geological consequences. Geology, 9: 507–511, 1981.Google Scholar
  93. Stauber, H.: Die Triasablagerungen von Ostgrönland. Meddr. Grønland, 132 (1), 1942.Google Scholar
  94. Stocklin, J.: Geology of Nepal and its regional frame. J. Geol. Soc. London, 137: 1–34, 1980.Google Scholar
  95. Stoneley, R.: A note on the structural evolution of Alaska. J. Geol. Soc. London, 127: 623–628, 1971.Google Scholar
  96. Surdam, R. C., Susuki, T. &Carlisle, D.: Upper Triassic section on Iron River, Vancouver Island, British Columbia. Geol. Soc. Amer. Special Paper 76: 226, 1964.Google Scholar
  97. Sutherland Brown, A.: Geology of the Queen Charlotte Islands, British Columbia. British Columbia Dept. Mines Petrol. Resources Bulletin 54, 1968.Google Scholar
  98. Tatzreiter, F.: Ammonitenfauna und Stratigraphie im hoheren Nor (Alaun, Trias) der Tethys aufgrund neuer Untersuchungen in Timor. Denkschr. Österr. Akad. Wiss. Math.-Naturwiss. Kl. 121, 1981.Google Scholar
  99. Tempelman-Kluit, D.: Stratigraphy and structure of the “Keno Hill quartzite” in the Tombstone River-Upper Klondike River map-areas, Yukon Territory (116 B/7, B/8). Geol. Surv. Canada Bull. 180, 1970.Google Scholar
  100. -: Transported cataclasite, ophiolite and granodiorite in Yukon: evidence of arc-continent collision. Geol. Surv. Canada Paper 74–14, 1979.Google Scholar
  101. Thorsteinsson, R. &Tozer, E. T.: Geology of the Arctic Archipelago. Geol. Surv. Canada, Economic Geol. Report 1 (Fifth ed.): 547– 590, 1970.Google Scholar
  102. Tipper, H. W.: Geology, Prince George, Cariboo District, British Columbia. Geol. Surv. Canada, Map 49–1960, 1961.Google Scholar
  103. —: Offset of an upper Pliensbachian geographic zonation in the North American Cordillera by transcurrent movement. Canadian J. Earth Sci., 18: 1788–1792, 1981.Google Scholar
  104. Tozer, E. T.: Stratigraphy of the Lewes River Group (Triassic), central Laberge area, Yukon Territory. Geol. Surv. Canada, Bull. 43, 1958.Google Scholar
  105. -: Triassic stratigraphy and faunas, Queen Elizabeth Islands, Arctic Archipelago. Geol. Surv. Canada, Mem. 316, 1961.Google Scholar
  106. -: A standard for Triassic time. Geol. Surv. Canada, Bull. 156, 1967.Google Scholar
  107. -: Marine Triassic faunas. Geol. Surv. Canada, Economic Geol. Report 1 (Fifth edition): 633–640, 1970.Google Scholar
  108. —: Triassic time and ammonoids: problems and proposals. Canadian J. Earth Sci., 8: 989–1031, 1971.Google Scholar
  109. —: Review of the Lower Triassic ammonoid succession and its bearing on chronostrati-graphic nomenclature. Österr. Akad. Wiss., Schrift. Erdwissenschaftlichen Komm. 4: 21–36, 1978.Google Scholar
  110. —: Latest Triassic (Upper Norian) ammonoid andMonotis faunas and correlations. Riv. Ital. Paleont. 85 (3–4): 843–876, 1980.Google Scholar
  111. -: Triassic Ammonoidea: geographic and stratigraphic distribution. In: “The Ammonoidea”, M. R. House & J. R. Senior Editors, Systematics Association Special vol. 18: 397–431, 1981.Google Scholar
  112. Tozer, E. T. &Thorsteinsson, R.: Western Queen Elizabeth Islands, Arctic Archipelago. Geol. Surv. Canada Mem. 332, 1964.Google Scholar
  113. Travers, W. B.: Overturned Nicola and Ashcroft strata and their relation to the Cache Creek Group, southwestern intermontane belt, British Columbia. Canadian J. Earth Sci., 15: 99–116, 1978.Google Scholar
  114. Trettin, H. P.: Permian rocks of the Cache Creek Group in the Marble Range, Clinton area, British Columbia Geol. Surv. Canada Paper 79–17, 1980.Google Scholar
  115. Trümpy, R.: Triassic of East Greenland. In G. O. Raasch, Ed., Geology of the Arctic, 1, University of Toronto Press: 248–254, 1961.Google Scholar
  116. Vereshchagin, V. N. &Ronov, A. B. (Editors): Atlas of the lithological - paleogeographical maps of the U. S. S. R., 3, Triassic, Jurassic & Cretaceous. Ministry of Geol. & Acad. Sci. U. S. S. R., 1968.Google Scholar
  117. Wang Yi-Gang, Chen Chu-Chen, He Guo-Xiong &Chen Jin-Hua: An outline of the marine Triassic in China. I. U. G. S. Publication 7, 1981.Google Scholar
  118. Wardlaw, B. R. &Jones, D. L.: Triassic conodonts from eugeoclinal rocks of western North America and their tectonic significance. Riv. Ital. Paleont. 85 (3–4): 895–908, 1980.Google Scholar
  119. Westermann, G. E. G.: The late Triassic bivalveMonotis. In: “Atlas of Palaeobiogeography”, A. Hallam Editor, Elsevier, Amsterdam, London, New York: 251–258, 1973.Google Scholar
  120. Whetten, J. T., Jones, D. L., Cowan, D. S. &Zartman, R. E.: Ages of Mesozoic terranes in the San Juan Islands, Washington. Pacific Coast Paleogeography Symposium 2. Society of Economic Paleontologists and Mineralogists, Los Angeles: 117–132, 1978.Google Scholar
  121. Yancey, T. E.: Permian positions of the northern hemisphere continents as determined from marine biotic provinces. In: “Historical Biogeography, Plate Tectonics and the Changing Environment”, Jane Gray and A. J. Boucot Editors, Oregon State University Press: 239–247, 1979.Google Scholar
  122. Yole, R. W. &Irving, E.: Displacement of Vancouver Island: paleomagnetic evidence from the Karmutsen Formation. Canadian J. Earth Sci., 17: 1210–1228, 1980.Google Scholar
  123. Zacharov, Yu. D.: The importance of palaeobiogeographical data for the solution of the problem of the Lower Triassic division. Österr. Akad. Wiss. Schrift. Erdwissenschaftlichen Komm., 2: 237–243, 1974.Google Scholar
  124. Zacharov, Yu. D., Naidin, D. P. &Teiss, R. V.: Oxygen isotopic composition of the Lower Triassic cephalopod shells from Arctic Siberia and salinity of boreal basins in early Mesozoic. Proc. U.S.S.R. Acad. Sci. Geol. ser. 4 (1975): 101–113, 1975 (In Russian).Google Scholar

Copyright information

© Ferdinand Enke Verlag Stuttgart 1982

Authors and Affiliations

  • E. T. Tozer
    • 1
  1. 1.Department of Energy, Mines and ResourcesGeological Survey of CanadaOttawaCanada

Personalised recommendations