Skip to main content
Log in

Palaeozoic granites of the Umberatana region, South Australia: the role of volatiles in the crystallization of some alkaline-peralkaline granites

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Paläozoische alkaline-peralkaline Sodagranite von Umberatana, Südaustralien, besitzen erhöhte Gehalte an MnO, P2O5, Nb, Ta, Be, F and B und zeigen Charakteristika von »A-Typ« Graniten. Erhöhte Gehalte an F und B erlaubte die Kristallisation von primärem Muskovit bei Drucken, die auf Grund der erniedrigten Solidus Temperaturen möglicherweise 1 Kbar betrugen. Diese Gas reichen Magmen schieden Albit und zwei Generationen von K-reichem Alkalifeldspat aus. Die hydrothermalen fluiden Phasen, die sich während der Kristallisation dieser Magmen bildeten, verursachten eine bedeutene Elementumverteilung und Rekristallisation in den Intrusionen und dem unmittelbaren Nebengestein.

Abstract

Palaeozoic alkaline to peralkaline sodic granites of the Umberatana area of South Australia have high MnO, P5O5, Nb, Ta, Be, F and B abundances as is typical of »A-type« or anorogenic granites. Abundant F and B in the magma permitted primary muscovite to crystallize at pressures that may have been as low as 1 Kbar because of the lowered solidus temperatures. These volatile-rich magmas precipitated both albite and two generations of K-rich alkali feldspar. The hydrothermal fluids released during crystallization of these magmas resulted in considerable element redistribution and recrystallization both in the plutons and the adjacent country rocks.

Résumé

Les granites sodiques alcalins à peralcalins paléozoïques de la région d'Umberatana (Australie méridionale) présentent des teneurs élevées en MnO, P2O5, Nb, Ta, Be, F et B, caractère typique des granites de type A, ou anorogéniques. La grande quantité de F et de B présente dans le magma a permis la cristallisation de muscovite primaire à une pression qui ne devait pas excéder 1 Kbar, en raison de l'abaissement de la température du solidus. Ces magmas, riches en matières volatiles, ont précipité de l'albite et deux générations de feldspath alcalin potassique. Les fluides hydrothermaux libérés au cours de la cristallisation ont permis une redistribution et une recristallisation importante des éléments à la fois dans les plutons et dans les roches encaissantes.

Краткое содержание

В палеозойских щелоч но-перщелочных натри евых гранитах из Амберете на (Южная Австралия) от мечают повышенное содержан ие MnO, P2O5, Nb, Та, Be, F и B, а также признаки, ра зрешающие относить их к гранитам типа «А». Повышенное содержан ие фтора и бора разрешае т кристаллизацию пер вичных мусковитов при давле ниях, которые, возможн о, в результате понижения солидуса т емператур, составляю т 1 кбар. Из этих богатых г азом магм выделяются альбит и два поколени я щелочного полевого шпата, богатого калие м. Гидротермальные жи дкие фазы, образующиеся во время кристаллизаци и этих магм, вызывают значит ельное перераспреде ление элементов и перекрис таллизацию, как в интр узиях, так и во вмещающих пор одах.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, J. L. &Rowley, M. C. (1981): Synkinematic intrusion of peraluminous and associated metaluminous granitic magma, Whipple Mountains, California. - Can. Min.,19, 83–101.

    Google Scholar 

  • — &Thomas, W M. (1985): Proterozoic anorogenic two-mica granites: Silver Plume and St. Vrain batholiths of Colorado. - Geology,13, 177–180.

    Google Scholar 

  • Anfilogov, V. N., Glyuk, D. S. &Trufanova, L. G. (1973): Phase relations in interaction between granite and sodium fluorite at water vapour pressure of 1000 kg/cm2. - Geochem. Int.,10 (1), 30–33.

    Google Scholar 

  • Bailey, J. C. (1977): Fluorine in granitic rocks and melts: a review. - Chem. Geol.,19, 1–42.

    Google Scholar 

  • Best, M. G., Armstrong, R. L., Graustein, W. C., Embree, G. F. &Ahlborn, R. C. (1974): Mica granites of the Kern Mountain Pluton, Eastern White Pine Country, Nevada: Remobilised basement of the Cordilleran Miogeosyncline?- Geol. Soc. Am. Bull.,85, 1277–86.

    Google Scholar 

  • Bonin, B. &Martin, R. F. (1974): Succession des types granitiques hypersolvus et transsolvus a subsolvus a Rockport (Massachusetts, batholite de Cape Ann) - Sciences de la Terre, Prog., 2 reunion annuelle, p. 67 (abs.).

  • Bowden, P. (1982): Magmatic evolution and mineralization in the Nigerian Younger Granite Province. - In: Evans, A. M. (ed.): Metallization associated with acid magmatism. London, Wiley, 51–61.

    Google Scholar 

  • — &Whitley, J. E. (1974): Rare-earth patterns in peralkaline and associated granites.- Lithos,7, 15–21.

    Google Scholar 

  • Burnham, C. W. &Ohmoto, H. (1980): Late-stage processes of felsic magmatism. - Min. Geol. Spec. Issue,8, 1–11.

    Google Scholar 

  • Burt, D. M. (1981): Acidity-salinity diagrams-application to greisen and porphyry deposits. - Econ. Geol.,76, 832–43.

    Google Scholar 

  • Chorlton, L. B. &Martin, R. F. (1978): The effect of boron on the granite solidus. - Can. Min.,16, 239–44.

    Google Scholar 

  • Clemens, J. D. &Wall, V. J. (1981): Origin and crystallisation of some peraluminous (S-type) granitic magmas. - Can. Min.,19, 11–31.

    Google Scholar 

  • Coats, R. P. &Blisset, A. H. (1971): Regional and economic geology of the Mt Painter Province. - South Aust. Geol. Surv., Bull.,43, 426 p., Adelaide.

  • Callen, B. A. &Williams, A. F. (1973): Copley map sheet. - Geol. Atlas S. Aust., 1 ∶ 250000 series, Geol.Surv. S. Aust., Adelaide.

    Google Scholar 

  • Collins, W. J., Beans, S. D., White, A. J. R. &Chappell, B. W. (1982): Nature and origin of A-type granites with particular reference to southeastern Australia. - Contrib. Mineral. Petrol.,80, 189–200.

    Google Scholar 

  • Deer, W.A., Howie, R. A. &Zussman, J. (1966): An introduction to the rock forming minerals.- 548 p., London, Longman.

    Google Scholar 

  • Fuge, R. (1977): On the behaviour of fluorine and chlorine during magmatic differentation. - Contrib. Mineral. Petrol.,61, 245–49.

    Google Scholar 

  • Glyuk, D. S. &Anfilogov, V. N. (1973a): Phase equilibria in the system granite-H2O-HF at a pressure of 1000 kg/ cm2. - Geochem. Int.,10 (1), 321–25.

    Google Scholar 

  • — (1973b): Phase equilibria in the system granite-H2O-KF at a water vapour pressure of 1000 kg/cm2. - Dokl. Acad. Sci. USSR, Earth Sci. Sec.,210, 237–38.

    Google Scholar 

  • Hogan, J. P. &Wones, D. R. (1984): Interpretation of resorbed muscovite from the Northport Pluton, Maine, USA. - E. O. S.,65 (16), 298.

    Google Scholar 

  • Hughes, C. J. (1982): Igneous petrology. - 551 p., Develop. Petrol,7, Amsterdam, Elsevier.

    Google Scholar 

  • Imeokparia, E. G. (1983): Geochemical aspects of the evolution and mineralization of the Arno Younger Granite Complex (Northern Nigeria). - Chem. Geol.,40, 293–312.

    Google Scholar 

  • — (1985): Rare-metal mineralization in granitic rocks of the Tongolo Anorogenic Complex — Northern Nigeria. - Mineral. Deposita,20, 81–88.

    Google Scholar 

  • Kovalenko, N. I. (1978): The reactions between granite and aqueous hydrofluoric acid in relation to the origin of fluorine-bearing granites. - Geochem. Int.,14 (2), 108–18.

    Google Scholar 

  • Lameyre, J. (1973): Les marques de l'eau dans les leucogranites du Massif Central francais. - Bull. Soc. Geol. Fr.,7, XV (3–4), 287–295.

    Google Scholar 

  • Le Fort, P. (1981): Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement.- J. Geophys. Res.,86 (B11), 10545–68.

    Google Scholar 

  • Loiselle, M. C. &Wones, D. R. (1979): Characteristics and origin of anorogenic granites. - Geol. Soc. Am., Abs. Prog.,11, 468.

    Google Scholar 

  • Lottermoser, B. G. (1987): A fluid inclusion study of the Tourmaline Hill Granite, Umberatana, South Australia: Implications for hydrothermal activity and wallrock metasomatism. - Mineral. Petrol.,36, 135–148.

    Google Scholar 

  • Manning, D. A. C. (1981): The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 Kbar. - Contrib. Mineral. Petrol.,76, 206–15.

    Google Scholar 

  • — (1982): An experimental study of the effects of fluorine on the crystallization of granitic melts.- In: Evans, A. M. (ed.): Metallization associated with acid magmatism. London, Wiley, 191–203.

    Google Scholar 

  • Mariano, A. N. (1978): The application of cathodoluminescence for carbonatite exploration and characterization. - Proc. 1st Internat. Symp. Carbonatites, 1976, Brazil, 39–57.

  • Marmo, V. (1971): Granite petrology and the granite problem. - 244 p., Develop. Petrol., 2, Amsterdam, Elsevier.

    Google Scholar 

  • Miller, C. F. &Stoddard, E. F. (1981): The role of manganese in the paragenesis of magmatic garnet: An example from the Old Woman — Piute Range, California. - J. Geol.,89, 233–46.

    Google Scholar 

  • — (1982): The role of manganese in the paragenesis of magmatic garnet: A reply. - J. Geol.,90, 341–3.

    Google Scholar 

  • Bradfish, L. J. &Dollase, W. A. (1981): Composition of plutonic muscovite: genetic implications. - Can. Min.,19, 25–34.

    Google Scholar 

  • Parkin, L. W. (1969): Handbook of South Australian geology. - 268 p., Adelaide, Geol. Surv. S. Aust.

    Google Scholar 

  • Phillips, G. N., Wall, V. J. &Clemens, J. D. (1981): Petrology of the Strathbogie Batholith: A cordierite — bearing granite. - Can. Min.,19, 47–63.

    Google Scholar 

  • Pichavant, M. (1981): An experimental study of the effect of boron on a water saturated haplogranite at 1 Kbar vapour pressure. - Contrib. Mineral. Petrol.,76, 430–39.

    Google Scholar 

  • — (1984): The effect of boron on liquidus phase relationships in the system Qz-Ab-Or-H2O at 1 Kbar.- E. O. S.,65 (16), 298.

    Google Scholar 

  • — &Manning, D. (1984): Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. - Physics Earth Plan. Int.,35, 31–50.

    Google Scholar 

  • Stemprok, M. (1971): Petrochemical features of tin-bearing granites in the Krusne Hory Mts Czechoslovakia. - Soc. Min. Geol. Japan, Spec. Iss.,2, 112–118.

    Google Scholar 

  • Stewart, D. B. (1978): Petrogenesis of lithium-rich pegmatites. - Am. Min.,63, 970–80.

    Google Scholar 

  • Taylor, R. P., Strong, D. F. &Fryer, B. J. (1981): Volatile control of contrasting trace element distributions in peralkaline granitic and volcanic rocks. - Contrib. Mineral. Petrol.,77, 267–71.

    Google Scholar 

  • Teale, G. S. (1979): Revision of nomenclature for Palaeozoic intrusives of the Mt Painter Province, South Australia.- Trans. Roy. Soc. S. Aust.,103, 95–100.

    Google Scholar 

  • Tuttle, O. F. &Bowen, N. L. (1958): Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. - Memoir Geol. Soc. Am.74.

  • Whitney, J. A. &Stormer, Jr.,J. C. (1977): Two feldspar geothermometry, geobarometry in mesozonal granitic intrusions: Three examples from the Piedmont of Georgia. - Contrib. Mineral. Petrol.,63, 51–64.

    Google Scholar 

  • Wones, D. R. (1979): Intensive parameters during the crystallization of granitic plutons. - Geol. Soc. Am., Abs. Prog.,11, 543.

    Google Scholar 

  • Wyllie, P. J. (1977): Crustal anatexis: an experimental review. - Tectonophysics,43, 41–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teale, G.S., Lottermoser, B.G. Palaeozoic granites of the Umberatana region, South Australia: the role of volatiles in the crystallization of some alkaline-peralkaline granites. Geol Rundsch 76, 857–868 (1987). https://doi.org/10.1007/BF01821069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01821069

Keywords

Navigation