On granitoid emplacement and related structures. A review

Zusammenfassung

Die Intrusion granitischer Magmen in die obere Krust ist das Ergebnis eines komplexen Zusammenspiels von schwerkraftbedingten Prozessen und horizontalen, tektonichen Bewegungen. Die gro\e Vielfalt tektonischer Strukturen von granitischen Plutonen spiegelt die Geschichte der Dynamik, ihres Aufstieges und ihrer Platznahme wider. Um den jeweils vorhandenen Intrusionsmechanismus zusammenhängend deuten zu können, sind Vergleiche der natürlichen, tektonischen Elemente mit experimentellen und numerischen Modellen notwendig. Hieraus lassen sich gegebenenfalls weitreichende Schlüsse zum Problem des Aufstiegs und der endgültigen Platznahme der Magmen in der Erkruste ziehen.

In dieser Arbeit werden die wesentlichen Aufstiegsmechanismen von Magmen aus der Literatur diskutiert. Im Einzelnen sind dieses: Aufwölbung, Diapirismus, Aufweitung, Abbau, Kraterbildung und Gangentwicklung.

Das Vordringen von Gängen ist der wirksamste Proze\ des Magmentransports aus tieferen Zonen der Kruste und des oberen Mantels. Ausdehnungsklüfte lassen sich als Ursache für das Vordringen von Gängen und den Magmenaufstieg nach der heutigen Theorie über die Entwicklung von Gängen in der tiefen Kruste herleiten. In orogenen Zonen erreichen Magmen die obere Erdkruste durch enge Kanäle oder Gänge und reichern sich dort auch in Form eines dikordanten, subkrustalen oder aufgweiteten Plutons an, wenn gleichzeitig mit der Platznahme regionaltektonische Deformationen ablaufen.

Abstract

Granitoid magmas are emplaced at the upper crust under a complex interaction of gravitational processes and horizontal tectonics. Natural intrusive bodies show a wide variety of structural patterns that must be strongly related with their dynamic history of ascent and emplacement. Comparisons of natural structural patterns with experimental and numerical models are necessary to interpret in a coherent fashion the emplacement mechanism involved.

From natural, experimental, numerical and theoretical considerations one can reach important conclusions on the problem of ascent and final emplacement of granitoid magmas in the Earth's crust. The present paper reviews the principal emplacement mechanisms referred to in the literature; that is, doming, diapirism, ballooning, stoping, cauldron subsidence and dike propagation.

Dike propagation is the most effektive process in magma transport from deep zones in the crust and upper mantle. Extensional fractures for dike propagation and magma ascent can be developed at depth in the crust according to the modern dike propagation theory. In orogenic domains, magmas reach the upper crust through narrow channels or dikes and are accumulated in a final reservoir in the form of a discordant supracrustal pluton or a ballooning pluton if, during emplacement, any regional deformation acts simultaneously.

Resumen

Los magmas graníticos se emplazan en la corteza superior bajo una compleja interaccion entre procesos gravitatorios y tectónica horizontal. Los cuerpos intrusivos naturales muestran una amplia variedad de patrones estructurales que pueden estar directamente relacionados con la dinámica de ascenso y emplazamiento. Para explicar de forma cohérente el mecanismo de emplazamiento implicado en un plutón es necesario establecer comparaciones entre patrones estructurales de plutones y modelos experimentales y numéricos.

A partir de consideraciones naturales, experimentales, numéricas y teóricas, se pueden extraer importantes conclusiones sobre el problema del ascenso y emplazamiento de magmas en la corteza. En este trabajo se revisan los principales mecanismos de emplazamiento referidos en la literatura; es decir, doming, diapirismo, ballooning, stoping, cauldron subsidence y propagación de diques.

Propagación de diques es el proceso más efectivo en el transporte de magmas desde zonas profundas en la corteza y manto superior. De acuerdo con la moderna teoría de propagación de diques, las fracuras extensionales pueden producirse en profundidad en la corteza. En dominios orogénicos, los magmas alcanzan la corteza superior a través de estrechos canales o diques y se acumulan en un reservorio final, bien en forma de plutones discordantes supracrustales, o bien en la forma de un »ballooning pluton« si durante el emplazamiento actûa alguna deformación regional.

кРАткОЕ сОДЕРжАНИЕ

ИНтРУжИь гРАНИтОИДН ых МАгМ В ВЕРхНИЕ слОИ кОРы ьВльЕтсь РЕжУльтАтО М слОжНОгО ВжАИМОДЕИ стВИь пРОцЕссОВ, ВыжВАННых сИлОИ тьжЕстИ И гОРИж ОНтАльНыМИ тЕктОНИЧЕскИМИ ДВИж ЕНИьМИ. БОльшОЕ МНОгООБРАжИЕ тЕктОН ИЧЕскИх стРУктУР И гР АНИтНых плУтОНОВ ОтРАжАЕт ДИ НАМИкУ пОДНьтИь МАгМ.

ЧтОБы В кАжДОМ ОтДЕль НОМ слУЧАЕ УьсНИть ИМЕУЩИИсь ИНтРУжИИН ыИ МЕхАНИжМ сО ВсЕМИ ВжАИМОсВьжьМИ, НЕОБхОДИМО пРОВЕстИ сРАВНЕНИь пРИРОДНых тЕктОНИЧЕскИх ЁлЕМЕ НтОВ с ЁкспЕРИМЕНтАл ьНыМИ И НУМЕРИЧЕскИМИ МОДЕ льМИ. ВЕРОьтНО тОлькО тОгДА УДАстсь сДЕлАть ДАлЕкО ИДУЩИ Е ВыВОДы ОтНОсИтЕльНО ВОпРОсА пОДНьтИь И МЕ стА жАлЕгАНИь МАгМы В жЕМНОИ кОРЕ.

В ДАННОИ РАБОтЕ ОБсУж ДАУт ВАжНЕИшИЕ МЕхАН ИжМы пОДНьтИь МАгМ, пРИВЕД ЕННыЕ В лИтЕРАтУРЕ, т. Е: ОБРАжОВАНИЕ кУпОлОВ, ДИАпИРИжМ, РА спРОстРАНЕНИЕ, МАгМАтИЧЕскИЕ ОБВАл ы, ОБРАжОВАНИЕ кРАтЕР ОВ И жИл. ВИтИЕ жИл.

ВНЕДРЕНИЕ жИл ьВльЕт сь НАИБОлЕЕ ВАжНыМ пР ОцЕсОМ пЕРЕНОсА МАгМ Иж глУБ ОкИх жОН кОРы И ВЕРхНЕ И МАНтИИ. с тОЧкИ жРЕНИь сЕгОДНьшНЕИ тЕОРИИ О БРАжОВАНИь жИл В глУБИННОИ кОРЕ т РЕЩИНы РАстьжЕНИь ьВльУтсь пРИЧИНОИ ВН ЕДРЕНИь жИл И пОДЩЕМА МАгМы. В жОНАх ОРОгЕНА МАгМы ДОстИгАУт ВЕРх НЕИ кОРы пО УжкИМ кАНАлАМ, ИлИ жИлАМ И, ЕслИ ОДНОВ РЕМЕННО с Их ОБРАжОВАНИЕМ ИМЕ Ут МЕстО тЕктОНИЧЕск ИЕ ДЕФОРМАцИИ РЕгИОНАл ьНОгО хАРАктЕРА, ОБРА жУУт плУтОНОВыЕ тЕлА, жАлЕ гАУЩИЕ ДИскОРДАНтНО.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, E. M. (1936): The dynamics of the formation of cone sheets, ring dykes and cauldron subsidences. - Royal Soc. Edinburg, Proa,56, 128–157.

    Google Scholar 

  2. Anderson, D. L. (1981): Rise of deep diapirs. - Geology,9, 7–9.

    Google Scholar 

  3. Balk, R. (1937): Structural Behaviour of Igneous Rocks. - Geol. Soc. Am. Mem.,5, 1–177.

    Google Scholar 

  4. Bateman, R. (1984): On the role of diapirism in the segregation, ascent and final emplacement of granitoid magmas.- Tectonophysics.,110, 211–231.

    Google Scholar 

  5. — (1985): Aureole deformation by flattening around a diapir during in-situ ballooning: the Cannibal Creek granite. - J. Geol.93, 293–310.

    Google Scholar 

  6. Berner, H., Ramberg, H. &Stephansson, O. (1972): Diapirism in theory and experiment.- Tectonophysics,74, 283–304.

    Google Scholar 

  7. Borradaile, G. J. &Scherdtner, W. M. (1984): Horizontal shortening of up ward-facing greenstone structures in the southern Superior Province, Canadian shield. - Can. J. Earth. Sci.,21, 611–615.

    Google Scholar 

  8. Both, M. H. T. &Smithson, F. B. (1967): Gravity investigations of subsurface shape and mass distribution of granite batholiths. - Geol. Soc. Am. Bull.,78, 859–878.

    Google Scholar 

  9. Brun, J. P. (1980): The cluster-ridge pattern of mantled gneiss domes in eastern Finnland: evidence for large scale gravitational instability of the proterozoic crust. - Earth. Plan. Sci. Lett.,47, 441–449.

    Google Scholar 

  10. — &Pons, J. (1981): Strain patterns of pluton emplacement in a crust undergoing non-coaxial deformation. - J. Struct. Geol.,3, 219–229.

    Google Scholar 

  11. Buddington, A. F. (1959): Granite emplacement with special reference to North America. - Geol. Soc. Am. Bull.,70, 671–747.

    Google Scholar 

  12. Burg, J. P.,Iglesias, M.,Laurent, Ph.,Matte, Ph. &Ribeiro, A. (1981): Variscan intracontinental deformation: the Coimbra-cordoba shear zone (SW Iberian peninsula). In: G. S.Lister, H. J.Behr, K.Weber & H. J.Zwart (editors) The Effect of Deformation on Rocks. - Tectonophysics,78, 161–177.

  13. Carnicero, A. &Castro, A. (1982): El complejo básico de Barcarrota. Su petrología y estructura. - Bol. Geol. Min.,93, 165–171.

    Google Scholar 

  14. — & — (1983): El pluton de Higuera-Táliga y su haz de diques básicos (Badajoz, Sierra Morena Occidental). - Estudios Geol.,39, 114–150.

    Google Scholar 

  15. Castro, A. (1984): Emplacement fractures in granite plutons (Central Extremadura batholith, Spain). - Geol. Rundsch.,73, 869–880, Stuttgart.

    Google Scholar 

  16. — (1985): The Central Extremadura batholith: geotectonic implications (European Hercynian belt). An outline.- Tectonophysics.120, 57–68.

    Google Scholar 

  17. — (1986): Structural pattern and ascent model in the Central Extremadura batholith, Hercynian belt, Spain.- J. Struct. Geol.8, 633–645.

    Google Scholar 

  18. Chadwick, K., Coe, K. &Stainforth, J. G. (1982): Magma generated structures and their subsequent development in the late Archaean evolution of northern Buksefjorden. Southern West Greenland. - Geol. Rundsch.71, 61–72, Stuttgart.

    Google Scholar 

  19. Corretgé, L. G. (1971): Estudio petrológico del batolito de Cabeza de Araya (Cáceres). Tesis Doctoral, Universidad de Salamanca. (unpubl.).

  20. —,Suarez, O. &Llana, R. (1981): Variaciones petrográ ficas y geoquímicas en plutones graníticos: Zonación y criptozonación en batolitos epizonales. - Cuad. Lab. Geol. Laxe2, 11–31.

    Google Scholar 

  21. Daly, R. A. (1903): The mechanics of igneous intrusions. - Am. J. Sci.16, 107–126.

    Google Scholar 

  22. — (1933): Igneous Rocks and the Depths of the Earth. - N. York Mc Graw Hill Book Co.

    Google Scholar 

  23. Debon, S. (1968): Sur l'existence de structures concentriques dans le massif granitique de Cauterets (Pyrénées Occidentales). - Sci. de la Terre.13, 65–78.

    Google Scholar 

  24. — (1980): Genesis of three concentrically-zoned granitoid plutons of Cauterets-Panticosa (French and Spanish Western Pyrenees). - Geol. Rundsch.69, 107–130, Stuttgart.

    Google Scholar 

  25. Dixon, J. M. (1975): Finite strain and progressive deformation in models of diapiric structures. - Tectonophysics.28, 89–124.

    Google Scholar 

  26. — &Summers, J. M. (1985): Recent developments in centrifuge modelling of tectonic processes: equipment, model construction techniques and rheology of model materials. - J. Struct. Geol.7, 83–102.

    Google Scholar 

  27. D.P.U.S. (Department of Petrology, Univ. of Salamanca) (1980): Plutonism of Central Western Spain. A preliminary note. - Estudios Geol.36, 339–348.

    Google Scholar 

  28. Eskola, P. E. (1949): The problems of mantled gneiss domes. - Geol. Soc. London Quart. Jour.54, 461–476.

    Google Scholar 

  29. García de Figuerola, L. C. &Franco, P. (1975): Las formaciones infraordovícicas y el borde de las granodioritas al E de Guijuelo (Salamanca). - Estudios Geol.31, 487–500.

    Google Scholar 

  30. — & —, &Castro, A. (1983): Características petrologicas del complejo laminar pegmatoide de las provincias de Salamanca y Avila. - Studia Geol. Salmant.19, 33–77.

    Google Scholar 

  31. Etheridge, M. A., Wall, V. J. &Vernon, R. H. (1983): The role of the fluid phase during regional metamorphism and deformation. - J. Metamorphic Geol.1, 205–226.

    Google Scholar 

  32. GonÇalves, F. &Pinto-Coelho, A. V. T. (1971): Nota Prévia sobre o prováel caracter subvolcânico do maciÇo granítico de Santa Eulália. (Alto Alentejo). - Bol. Geol. Min.82, 291–298.

    Google Scholar 

  33. Grout, F. F. (1945): Scale models of structures related to batholiths. - Am. J. Sci.243, 260–284.

    Google Scholar 

  34. Hodge, D. S. (1974): Thermal model for the origin of granite batholiths. - Nature.251, 297–299.

    Google Scholar 

  35. Holder, M. P. (1979): An emplacement mechanism for post-tectonic granites and its implications for their geochemical features.- In:M. P. Atherton &J. Tarney (editors) Origin of Granite Batholiths. Shiva Publ. Ltd. U. K. pp. 116–128.

    Google Scholar 

  36. Hutton, D. H. W. (1982): A tectonic model for the emplacement of the main Donegal granite, NW Ireland. - J. Geol. Soc. London.139, 615–631.

    Google Scholar 

  37. López-Plaza, M. (1980): Comportamiento reologico, fuerza ascensional y deformación en el material granitico: Aplicación al plutón de Ledesma (Salamanca). - Bol. Geol. Min.91, 649–660.

    Google Scholar 

  38. - (1982): Contribución al conocimineto de la dinámica de los cuerpos gramticos en la Penillanura Salmantino-Zamorana.Tesis Doctoral, Univ. de Salamanca. (unpubl).

  39. Marsh, B. D. (1982): On the mechanics of igneous diapirism, stoping and zone melting. - Am. J. Sci.282, 808–855.

    Google Scholar 

  40. Miller, D. M. (1983): Strain on a gneiss dome in the Albion Mountains metamorphic core complex, Idaho. - Am. J. Sci.283, 605–632.

    Google Scholar 

  41. Pascual, E. (1981): Investigaciones geologicas en el sector Córdoba Villaviciosa de Córdoba (Sector Central de Sierra Morena).- Tesis Doctoral, Univ. de Granada (unpubl.).

  42. Pitcher, W. S. (1979): The nature, ascent and emplacement of granitic magmas. - J. Geol. Soc. London.136, 627–662.

    Google Scholar 

  43. - &Berger, A. R. (1972): The Geology of Donegal: A study of granite emplacement and unroofing. - Regional Geology Series. Wiley Interscience.

  44. Platt, J. P. (1980): Archaean greenstone belts: a structural test of tectonic hypothesis. - Tectonophysics.65, 127–150.

    Google Scholar 

  45. Pons, J. &Brun, J. P. (1984): Sur le caracter syntectonique de quelques plutons de la Sierra Morena Occidentale (Sud Ouest Espagne). - Bol. Geol. Min.95, 26–32.

    Google Scholar 

  46. Ramberg, H. (1970): Model studies in relation to intrusion of plu tonic bodies. In:G. Newall &N. Rast (editors) Mechanisms of Igneous Intrusion. Seel House Press, Liverpool, pp. 261–286.

    Google Scholar 

  47. - (1981): Gravity, Deformation and the Earth's Crust. 2nd edition. Academis Press.

  48. Ramsay, J. G. (1981): Emplacement mechanics of the Chindamorabatholith. Zimbawe. - In: M. P.Coward (ed.)Diapirism and Gravity Tectonics. Report of a Tectonic studies Group Conference at Leeds University. 25–26.3.80. - J. Struct. Geol.3, 93.

  49. Rast, N. (1970): The initiation, ascent and emplacement of magmas. - In:G. Newall &N. Rast (eds.) Mechanisms of Igneous Intrusion. Seel House Press, Liverpool. pp. 339–362.

    Google Scholar 

  50. Schwerdtner, W. M. (1981): Archaean greenstone belts: a structural test of tectonic hypotheses — Discussion.- Tectonophysics.72, 159–163.

    Google Scholar 

  51. — (1982): Salt stocks as natural analogues of Archaean gneiss diapirs. - Geol. Rundsch.71, 370–379, Stuttgart.

    Google Scholar 

  52. —,Stone, D., Osadeta, K., Morgan, J. &Stott, G. M. (1979): Gravitational complexes and Archaean tectonic record in the southern part of Nortwestern Ontario. - Can. J. Earth Sci.16, 1965–1977.

    Google Scholar 

  53. —,Sutcliffe, R. H. &Tröeng, B. (1978): Patterns of total strain within the crestal region of immature diapirs. - Can. J. Earth Sci.15, 1437–1447.

    Google Scholar 

  54. —,Stott, G. M. &Sutcliffe, R. H. (1983): Strain patterns of crescentic granitoid plutons in the Archaean greenstone terrains of Ontario. - J. Struct. Geol.5, 419–430.

    Google Scholar 

  55. Secor, D. T. (1965): Role of fluid pressure in jointing. - Am. J. Sci.263, 633–646.

    Google Scholar 

  56. Shaw, H. R. (1980): Fracture mechanisms of magma transport from the mantle to the surface. - In:R. B. Hargraves (ed.), Physics of Magmatic Processes. Princeton, N. Y. Princeton University Press. pp. 201–264.

    Google Scholar 

  57. Spera, F. J. (1980): Aspects of magma transport. - In:R.B. Hargraves (ed.), Physics of Magmatic Processes. Princeton N. Y. Princeton University Press. pp. 265–314.

    Google Scholar 

  58. Stephansson, O. (1975): Polydiapirism of granite rocks in the Svecofennian of central Sweden. - Precambrian Research.2, 189–214.

    Google Scholar 

  59. Stephens, W. E. &Halliday, A. N. (1979): Compositional variation in the Galloway plutons. - In:M. P. Atherton &J. Tarney (ed.) Origin of Granite Batholiths. Shiva Publishing Ltd. U. K.

    Google Scholar 

  60. Sweeney, F. J. (1975): Diapiric granite batholiths in South-central Maine. - Am. J. Sci.275, 1185–1191.

    Google Scholar 

  61. Talbot, C. J. &Jarvis, R. J. (1984): Age, budget and dynamics of an active salt extrusion in Iran. - J. Struct. Geol.6, 521–544.

    Google Scholar 

  62. Terzaghi, K. (1936): Simple test determine hydrostatic uplift. - Engl. News Record.116, 872–875.

    Google Scholar 

  63. Vance, J. A. (1961): Zoned granitic intrusionsAn alternative hypothesis of origin. - Geol. Soc. Am. Bull.72, 1723–1228.

    Google Scholar 

  64. Winkströn, A. (1984): A possible relationship between augen gneisses and postorogenic granites in SE Sweden. - J. Struct. Geol.6, 409–415.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Castro, A. On granitoid emplacement and related structures. A review. Geol Rundsch 76, 101–124 (1987). https://doi.org/10.1007/BF01820576

Download citation

Keywords

  • Structural Pattern
  • Intrusive Body
  • Emplacement Mechanism
  • Magma Ascent
  • Granitoid Magma