Advertisement

aequationes mathematicae

, Volume 7, Issue 1, pp 36–58 | Cite as

The effect of quadrature errors in the numerical solution of two-dimensional boundary value problems by variational techniques

  • R. J. Herbold
  • R. S. Varga
Research Papers

Keywords

Variational Technique Quadrature Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Birkhoff, G. andDe Boor, C. R.,Piecewise Polynomial Interpolation and Approximation, inApproximation of Functions (Editor: H. L. Garabedian),Proc. Sympos. General Motors Res. Lab., 1964 (Elsevier Publ., New York, N.Y. 1965), pp. 164–190.Google Scholar
  2. [2]
    Birkhoff, G., Schultz, M. H. andVarga, R. S.,Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations, Numer. Math.11, 232–256 (1968).Google Scholar
  3. [3]
    Ciarlet, P. G.,Variational Methods for Non-Linear Boundary-Value Problems (Doctoral Thesis, Case Institute of Technology, 1966 (103 pp.)).Google Scholar
  4. [4]
    Ciarlet, P. G., Schultz, M. H. andVarga, R. S.,Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One dimensional Problem, Numer. Math.9, 394–430 (1967).Google Scholar
  5. [5]
    Ciarlet, P. G., Schultz, M. H. andVarga, R. S.,Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. V. Monotone Operator Theory, Numer. Math.13, 51–77 (1969).Google Scholar
  6. [6]
    Courant, R. andHilbert, D.,Methods of Mathematical Physics, Vol. 1 Interscience Publ., New York, N.Y. 1953).Google Scholar
  7. [7]
    Herbold, R. J.,Consistent Quadrature Schemes for the Numerical Solution of Boundary Value Problems by Variational Techniques (Doctoral Thesis, Case Western Reserve University, 1968 (189 pp.)).Google Scholar
  8. [8]
    Herbold, R. J., Schultz, M. H. andVarga, R. S.,The Effect of Quadrature Errors in the Numerical Solution of Boundary Value Problems by Variational Techniques, Aequationes Math.3, 247–270 (1969).Google Scholar
  9. [9]
    Hille, E., Szegö, G. andTamarkin, J.,On Some Generalizations of a Theorem of A. Markoff, Duke Math. J.3, 729–739 (1937).Google Scholar
  10. [10]
    Levinson, N.,Dirichlet Problem for Δu = f (P, u), J. Math. Mech.12, 567–575 (1963).Google Scholar
  11. [11]
    Sard, A.,Linear Approximation (Amer. Math. Soc., Providence, R.I. 1963 [Mathematical Survey, Vol. 9]).Google Scholar
  12. [12]
    Todd, J. (Editor),A Survey of Numerical Analysis (McGraw Hill, New York-Toronto-London 1962).Google Scholar
  13. [13]
    Varga, R. S.,Matrix Iterative Analysis (Prentice Hall, Englewood Cliffs, N.J. 1962).Google Scholar
  14. [14]
    Weinberger, H. F.,A First Course in Partial Differential Equations with Complex Variables and Transform Methods (Blaisdell Publ., New York, N.Y. 1965).Google Scholar
  15. [15]
    Yosida, K.,Functional Analysis (Springer Verlag, Berlin 1965).Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • R. J. Herbold
    • 1
  • R. S. Varga
    • 2
  1. 1.Procter and GambleCincinnatiUSA
  2. 2.Kent State UniversityKentUSA

Personalised recommendations