aequationes mathematicae

, Volume 7, Issue 1, pp 36–58 | Cite as

The effect of quadrature errors in the numerical solution of two-dimensional boundary value problems by variational techniques

  • R. J. Herbold
  • R. S. Varga
Research Papers

Keywords

Variational Technique Quadrature Error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Birkhoff, G. andDe Boor, C. R.,Piecewise Polynomial Interpolation and Approximation, inApproximation of Functions (Editor: H. L. Garabedian),Proc. Sympos. General Motors Res. Lab., 1964 (Elsevier Publ., New York, N.Y. 1965), pp. 164–190.Google Scholar
  2. [2]
    Birkhoff, G., Schultz, M. H. andVarga, R. S.,Piecewise Hermite Interpolation in One and Two Variables with Applications to Partial Differential Equations, Numer. Math.11, 232–256 (1968).Google Scholar
  3. [3]
    Ciarlet, P. G.,Variational Methods for Non-Linear Boundary-Value Problems (Doctoral Thesis, Case Institute of Technology, 1966 (103 pp.)).Google Scholar
  4. [4]
    Ciarlet, P. G., Schultz, M. H. andVarga, R. S.,Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One dimensional Problem, Numer. Math.9, 394–430 (1967).Google Scholar
  5. [5]
    Ciarlet, P. G., Schultz, M. H. andVarga, R. S.,Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. V. Monotone Operator Theory, Numer. Math.13, 51–77 (1969).Google Scholar
  6. [6]
    Courant, R. andHilbert, D.,Methods of Mathematical Physics, Vol. 1 Interscience Publ., New York, N.Y. 1953).Google Scholar
  7. [7]
    Herbold, R. J.,Consistent Quadrature Schemes for the Numerical Solution of Boundary Value Problems by Variational Techniques (Doctoral Thesis, Case Western Reserve University, 1968 (189 pp.)).Google Scholar
  8. [8]
    Herbold, R. J., Schultz, M. H. andVarga, R. S.,The Effect of Quadrature Errors in the Numerical Solution of Boundary Value Problems by Variational Techniques, Aequationes Math.3, 247–270 (1969).Google Scholar
  9. [9]
    Hille, E., Szegö, G. andTamarkin, J.,On Some Generalizations of a Theorem of A. Markoff, Duke Math. J.3, 729–739 (1937).Google Scholar
  10. [10]
    Levinson, N.,Dirichlet Problem for Δu = f (P, u), J. Math. Mech.12, 567–575 (1963).Google Scholar
  11. [11]
    Sard, A.,Linear Approximation (Amer. Math. Soc., Providence, R.I. 1963 [Mathematical Survey, Vol. 9]).Google Scholar
  12. [12]
    Todd, J. (Editor),A Survey of Numerical Analysis (McGraw Hill, New York-Toronto-London 1962).Google Scholar
  13. [13]
    Varga, R. S.,Matrix Iterative Analysis (Prentice Hall, Englewood Cliffs, N.J. 1962).Google Scholar
  14. [14]
    Weinberger, H. F.,A First Course in Partial Differential Equations with Complex Variables and Transform Methods (Blaisdell Publ., New York, N.Y. 1965).Google Scholar
  15. [15]
    Yosida, K.,Functional Analysis (Springer Verlag, Berlin 1965).Google Scholar

Copyright information

© Birkhäuser Verlag 1971

Authors and Affiliations

  • R. J. Herbold
    • 1
  • R. S. Varga
    • 2
  1. 1.Procter and GambleCincinnatiUSA
  2. 2.Kent State UniversityKentUSA

Personalised recommendations