Aequationes mathematicae

, Volume 17, Issue 1, pp 164–181 | Cite as

On generating large classes of Sheffer functions

  • I. G. Rosenberg
Research papers


Let A be a finite set,n > 1 andD\( \subseteq \)A n . We say thatf:D → A is a partial Sheffer function of size |D| if eachf*: A n → A agreeing withf onD is Sheffer (or complete that is 〈A; f〉 primal), i.e. iff* generates allg:A m → A (m = 1, 2, ⋯) via repeated composition. The least size of a partial Sheffer function is shown to be |A| + 2 and all partial Sheffer functions of this size are exhibited. This shows how surprisingly little information onf is needed to ensure thatf is Sheffer and, at the same time, gives a description of large classes of Sheffer functions.

AMS (1970) subject classification

Primary 08A25 Secondary 02C05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abian, A. andLa Macchia, S. D.,Examples of generalized Sheffer functions. Acta Math. Acad. Sci. Hungar.18 (1967), 189–190.MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    Bairamov, R. A.,Sheffer functions in many-valued logics. (Russian). Problems in the Theory of Electronic Digital Computers, No. 3, Akad. Nauk USSR, Kiev, 1967, 62–71.Google Scholar
  3. [3]
    Bairamov, R. A.,Stabilizators of predicates and Sheffer functions in finite-valued logics, (Russian) Dok. Akad. Nauk Azerbaidžan. SSR2 (1968), 3–6.MATHGoogle Scholar
  4. [4]
    Bairamov, R. A.,On the question of functional completeness in many-valued logic. (Russian) Diskret. Analiz11 (1967), 3–20.MathSciNetMATHGoogle Scholar
  5. [5]
    Bodendieck, R.,Über das Repräsentantenproblem in der k-vertigen Logik. Math.-Phys. Semesterber. (NS)21 (1974), 46–66.Google Scholar
  6. [6]
    Butler, J. W.,On complete and independent sets of operations in finite algebras. Pacific J. Math.10 (1960), 1169–1179.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    Davies, Roy O.,On m-valued Sheffer functions. Preprint, University of Leicester 1968.Google Scholar
  8. [8]
    Demetrovics, J.,On the diagonal of the Sheffer functions. Preprint.Google Scholar
  9. [9]
    Ellozy, M. A.,Three classes of generalized Sheffer functions in M-valued logic. Preprint, IBM Thomas J. Watson Research Center, 1974.Google Scholar
  10. [10]
    Evans, T. andHardy, L.,Sheffer stroke functions in many-valued logics. Port. Math.16 (1957), 83–93.MathSciNetMATHGoogle Scholar
  11. [11]
    Götlind, E.,Some Sheffer functions in n-valued logic. Port. Math.11 (1952), 141–149.MathSciNetGoogle Scholar
  12. [12]
    Graham, R. L.,On n-values functionally complete truth functions. J. Symbolic Logic32 (1967), 190–195.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    Hendry, H. E. andMassey, G. J.,On the concepts of Sheffer functions. The Logical Way of Doing Things (K. Lambert editor), Yale Univ. Press, New Haven, 1969, 279–293.Google Scholar
  14. [14]
    Jablonskii, S. V.,On functional completeness in the three-valued calculus. (Russian) Dokl. Akad. Nauk SSSR95 (1954), 1153–1155.Google Scholar
  15. [15]
    Jablonskii, S. V.,Functional constructions in the k-valued logic (Russian) Trudy Mat. Inst. Steklov.51 (1958), 5–142.MathSciNetGoogle Scholar
  16. [16]
    Jablonskii, S. V., Gavrilov, G. P. andKudrjavcev, V. B.,Functions of the algebra of logic and the Post classes. (Russian) Moscow 1966. German Translation: Boolesche Funktionen und Postsche Klassen, Lizenzausgabe des Akademie-Verlages, Berlin, 1970.Google Scholar
  17. [17]
    Kolesnikov, M. A. andŠeinbergas, I. M.,Sheffer functions in the four-valued logic. (Russian) Papers on engineering cybernetics No. 3, 50–100. Vyčisl. Centr. Akad. Nauk SSSR, Moscow 1971.Google Scholar
  18. [18]
    La Macchia, S. andAbian, A.,Some generalized Sheffer functions. Arch. Math. Logik Grundlagenforsch.10 (1967), 1–2.MathSciNetGoogle Scholar
  19. [19]
    Mathematika v SSSR za sorok let (Mathematics in the USSR during forty years) vol. 1, Moscow 1959.Google Scholar
  20. [20]
    Martin, N. M.,Some analogues of the Sheffer stroke function in n-valued logic. Inda. Math.12 (1950), 1100–1107.MATHGoogle Scholar
  21. [21]
    Martin, N. M.,A note on Sheffer functions in n-valued logic. Methodos3 (1951), 240–242.Google Scholar
  22. [22]
    Martin, N. M.,The Sheffer function of 3-valued logic. J. Symb. Logic.19 (1954), 54–51.CrossRefGoogle Scholar
  23. [23]
    Moon, J. W.,Counting labelled trees: A survey of methods and results. William Clowes London 1970, x + 113 pp. Canada. Math. Monographes No. 1.Google Scholar
  24. [24]
    Muzio, J. C.,Some large classes of n-valued Sheffer functions. Proc. Camb. Phil. Soc.74 (1973), 201–211.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    Post, E. L.,Introduction to a general theory of elementary propositions. Amer. J. Math., Vol.43 (1921), 163–185.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    Rose, A.,Some generalized Sheffer functions. Proc. Cambridge Phil. Soc.48 (1952), 369–373.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    Rosenberg, I.,La structure des fonctions de plusieurs variables sur un ensemble fini. C. R. Acad. Sci. Paris Sér. A-B260 (1965), 3817–3819.MathSciNetMATHGoogle Scholar
  28. [28]
    Rosenberg, I.,Uber die funktionale Vollständigkeit in den nehrwertigen Logiken. Rozpravy Československe Akad. Věd. Řada Mat.\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{P} \)řírod. Věd80 (1970), 96 pp.Google Scholar
  29. [29]
    Rousseau, G.,Completeness in finite algebras with a single operation. Proc. Amer. Math. Soc.18 (1967), 1009–1013.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Salomaa, A.,Some completeness criteria for sets of functions over a finite domain II. Ann. Univ. Turku, Ser. A63 (1963), 19 pp.Google Scholar
  31. [31]
    Sierpiński, W.,Elementary theory of numbers. Panstwowe Wyd. Naukove, Warszawa 1964.MATHGoogle Scholar
  32. [32]
    Schofield, P.,Independent conditions for completeness of finite algebras with a single operator. J. London Math. Soc.44 (1969), 413–423.MathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    Schofield P.,Complete subsets of mappings over a finite domain, Proc. Camb. Phil. Soc.62 (1966), 597–611.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    Sheffer, H. M.,A set of five independent postulates for Boolean algebra with application to logical constants. Trans. Amer. Math. Soc.14 (1913), 481–488.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    Singer, F. R.,Some Sheffer functions for m-valued logics. Scripta Math.28 (1967), 21–27.MathSciNetMATHGoogle Scholar
  36. [36]
    Slupecki, J.,A completeness criterion of many-valued logical systems. Comptes-Rendus Varsovie (Polish), class III32 (1939), 102–209; English translation: A criterion of fullness of many-valued systems of propositional logica, Studia Logica30 (1972), 153–157.Google Scholar
  37. [37]
    Swift, J. D.,Algebraic properties of n-valued propositional calculi. Amer. Math. Monthly59 (1952), 612–621.MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    Webb, D. L.,Generation of any n-valued logic by one binary operation. Proc. Nat. Acad. Sc.21 (1935), 252–259.CrossRefMATHGoogle Scholar
  39. [39]
    Webb, D. L.,Definition of Post's generalized negative and maximum in terms of one binary operation. Amer. J. Math.58 (1936), 193–194.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    Wheeler, R. F.,An asymptotic formula for the number of complete propositional connectives. Z. Math. Logik Grundlagen Math.8 (1962), 1–4.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    Wheeler, R. F.,Complete connectives for the 3-valued propositional calculus. Proc. London Math. Soc.16 (1966), 167–191.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    Zyliński, E.,Some remarks concerning the theory of deductions. Fund. Math.7 (1925), 203–209.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag 1978

Authors and Affiliations

  • I. G. Rosenberg
    • 1
  1. 1.Centre de recherches mathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations