aequationes mathematicae

, Volume 3, Issue 1–2, pp 15–43 | Cite as

A grammar of functions

  • B. Schweizer
  • A. Sklar
Research Papers


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abel, N. H.,Untersuchungen der Functionen zweier unabhängig veränderlichen Grössen x und y wie f(x, y), welche die Eigenschaft haben, dass f(z,f(x, y)) eine symmetrische Function von x, y, und z ist, J. Reine Angew. Math.1, 11–15 (1826).Google Scholar
  2. [2]
    Aczél, J.,Lectures on Functional Equations and Their Applications (Academic Press 1966).Google Scholar
  3. [3]
    Babbage, C.,An Essay Towards the Calculus of Functions, Phil. Trans. Royal Soc. 389–423 (1815); 179–256 (1816).Google Scholar
  4. [4]
    Belousov, V. D.,Medial Systems of Quasigroups, Usp. Mat. Nauk14 (89), 213–214 (1959).Google Scholar
  5. [5]
    Berman, G. andR. J. Silverman,Embedding of Algebraic Systems, Pacific J. Math.10, 777–786 (1960).Google Scholar
  6. [6]
    Clifford, A. H. andG. B. Preston,The Algebraic Theory of Semigroups, I. Amer. Math. Soc. Math. Surveys No. 7 (1961).Google Scholar
  7. [7]
    Cohn, P. M.,Universal Algebra (Harper & Row 1965).Google Scholar
  8. [8]
    Curry, H. B. andR. Feys,Combinatory Logic (North-Holland Publishing Co. 1958).Google Scholar
  9. [9]
    Davies, R. O.,Two Theorems on Essential Variables J. London Math. Soc.41, 333–335 (1966).Google Scholar
  10. [10]
    Davis, A. S.,An Axiomatization of the Algebra of Transformations over a Set, Math. Annalen164, 372–377 (1966).Google Scholar
  11. [11]
    Dicker, R. M.,The Substitutive Law, Proc. London Math. Soc.13, 493–510 (1963).Google Scholar
  12. [12]
    Evans, T.,Abstract Mean Values, Duke Math. J.30, 331–347 (1963).Google Scholar
  13. [13]
    Gluskin, L. M.,Positional Operatives, Dokl. Akad. Nauk SSSR157, 767–770 (1964). Mat. Sb. (N.S.)68 (110), 444–472 (1965).Google Scholar
  14. [14]
    Graham, R. L.,On n-Valued Functionally Complete Truth-Functions, J. Symb. Logic32, 190–195 (1967).Google Scholar
  15. [15]
    Hartmanis, J. andR. E. Stearns,Algebraic Structure Theory of Sequential Machines (Prentice-Hall 1966).Google Scholar
  16. [16]
    Herschel, J. F. W.,Consideration of Various Points of Analysis, Phil. Trans. Royal Soc. (1814).Google Scholar
  17. [17]
    Hosszú, M.,On the Explicit Form of n-Group Operations, Publ. Math. Debrecen10 88–92 (1963).Google Scholar
  18. [18]
    Jónsson, B. andA. Tarski,Boolean Algebras with Operators, Part I, Amer. J. Math.73, 891–939 (1951).Google Scholar
  19. [19]
    Kuczma, M.,Functional Equations in a Single Variable, Monografie Matematyczne, Vol. 46 (Warsaw 1968).Google Scholar
  20. [20]
    Ljapin, E. S.,Semigroups (Amer. Math. Soc., 1963 [Translations of Mathematical Monographs, Vol. 3]).Google Scholar
  21. [21]
    Mal'cev, A. I.,Foundations of Linear Algebra (W. H. Freeman 1963).Google Scholar
  22. [22]
    Menger, K.,Calculus, a Modern Approach (Ginn 1955).Google Scholar
  23. [23]
    Menger, K.,An Axiomatic Theory of Functions and Fluents. The Axiomatic Method,L. Henkin et al., Eds (North-Holland 1959), p. 454–473.Google Scholar
  24. [24]
    Menger, K.,On Substitutive Algebra and its Syntax, Zeits. Math. Logik Grundl. Math.10, 81–104 (1964).Google Scholar
  25. [25]
    Menger, K. andH. I. Whitlock,Two Theorems on the Generation of Systems of Functions, Fund. Math.58, 229–240 (1966).Google Scholar
  26. [26]
    Nöbauer, W.,Über die Darstellung von universellen Algebren durch Funktionenalgebren, Publ. Math. Debrecen10, 151–154 (1963).Google Scholar
  27. [27]
    Post, E. L.,Introduction to a General Theory of Elementary Propositions, Amer. J. Math.43, 163–185 (1921).Google Scholar
  28. [28]
    Post, E. L.,The Two-Valued Iterative Systems of Mathematical Logic, Annals of Math. Studies No. 5 (Princeton 1941).Google Scholar
  29. [29]
    Robinson, J.,General Recursive Functions, Proc. Amer. Math. Soc.1, 703–718 (1950).Google Scholar
  30. [30]
    Schein, B. M.,Relation Algebras, Proceedings of the Inter-university Scientific Symposium on General Algebra (Tartu 1966), 130–168.Google Scholar
  31. [31]
    Schein, B. M.,The Theory of Semigroups as a Theory of Superposition of Multiplace Functions, ibid., 169–190.Google Scholar
  32. [32]
    Schweizer, B. andA. Sklar,The Algebra of Functions. I, Math. Annalen139, 366–382 (1960); II, ibid.143, 440–447 (1961); III, ibid.161, 171–196 (1965).Google Scholar
  33. [33]
    Schweizer, B. andA. Sklar,Function Systems, ibid.172, 1–16 (1967).Google Scholar
  34. [34]
    Schweizer, B. andA. Sklar,A Mapping Algebra with Infinitely Many Operations, Colloq. Math.9, 33–38 (1962).Google Scholar
  35. [35]
    Schweizer, B. andA. Sklar,The Algebra of Multiplace Vector-Valued Functions, Bull. Amer. Math. Soc.73, 510–515 (1967).Google Scholar
  36. [36]
    Sierpiński, W.,Algèbre des ensembles, Monografie Matematyczne, Vol. 23 (Warsaw 1957).Google Scholar
  37. [37]
    Swift, J. D.,Algebraic Properties of N-Valued Propositional Calculi, Amer. Math. Monthly59, 612–620 (1952).Google Scholar
  38. [38]
    Webb, D. L.,Generation of n-Valued Logic by One Binary Operation, Proc. Nat. Acad. Sci.21, 252–254 (1935).Google Scholar
  39. [39]
    Wheeler, R. F.,Complete Connectives for the 3-Valued Propositional Calculus, Proc. London Math. Soc. (3)16, 167–191 (1966).Google Scholar
  40. [40]
    Whitlock, H. I.,A Composition Algebra for Multiplace Functions, Math. Annalen157, 167–178 (1964).Google Scholar
  41. [41]
    Zupnik, D.,Polyadic Semigroups, Publ. Math. Debrecen14, 273–279 (1967).Google Scholar

Copyright information

© Birkhäuser-Verlag 1969

Authors and Affiliations

  • B. Schweizer
    • 1
  • A. Sklar
    • 2
  1. 1.The University of MassachusettsAmherstUSA
  2. 2.Illinois Institute of TechnologyChicagoUSA

Personalised recommendations