, Volume 32, Issue 1, pp 200–246 | Cite as

Polyploidy and radiosensitivity in wheat and barley

2. Survival, pollen and seed fertility and mutation frequency
  • S. Bhaskaran
  • M. S. Swaminathan


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afanassjewa, A. S. (1936) Die Wirkung der Röntgenstrahlen auf die Zellenelemente vom SommerweizenTriticum vulgare var.Caesium 0. 111.Biol. Zhur. 5: 117–124.Google Scholar
  2. Åkerman, A. (1927) Weitere Studien über Speltoidchimaeran beiTriticum vulgare.Hereditas,9: 321–34.Google Scholar
  3. Åkerman, A. (1929) Letalfaktorer hos havre och vete.Beretn. N.J.F. 4. Kongr. Helsingfors: 594–604.Google Scholar
  4. Åkerman, A. &K. Fröier. (1941) Studien über eine spontaneChlorina Mutation inAvena sativa.Hereditas,27: 371–404.Google Scholar
  5. Anderson, E., A. E. Longley, C. H. Li &K. L. Retherford (1949) Hereditary effects produced in maize by radiations from the Bikini atomic bomb. I. Studies on seedlings and pollen of the exposed generation.Genetics,34: 639–646.PubMedGoogle Scholar
  6. Barnes, D. W. H., C. E. Ford, S. M. Gray & J. F. Loutit (1958) Spontaneous and induced changes in cell populations in heavily irradiated mice.Proc. Intern. Conf. Peaceful Uses of Atomic Energy.Google Scholar
  7. Beam, C. A. (1950) Studies on the killing and the mutation of micro-organisms by chemical and physical agents. Ph. D. thesis, Yale University (quoted byTobias et al, 1958).Google Scholar
  8. Bhaskaran, S. &M. S. Swaminathan (1960) Polyploidy and radiosensitivity in wheat and barley. 1. Cytological and cytochemical studies.Genetica,31: 449–480,32: 1–32.Google Scholar
  9. Bishop, C. J. (1952) The influence of polyploidy on the X-ray sensitivity of cells.Can. J. Bot. 30: 139–146.Google Scholar
  10. Blixt, S., L. Ehrenberg &O. E. V. Gelin (1958) Quantitative studies of induced mutations in Peas. I. Methodological investigation.Agr. Hort. Genetica,16: 238–49.Google Scholar
  11. Borg, G., K. Fröier &Å. Gustafsson (1958) Pallas barley, a variety produced by ionizing radiation: its significance for plant breeding and evolution.2nd Intern. Conf. Peaceful Uses of Atomic Energy 27: 341–349.Google Scholar
  12. Bremer-Reinders, D. E. (1958) The early stages of development in the rye spike.Acta Bot. Neerl. 7: 223–32.Google Scholar
  13. Buzzati-Traverso, A. A. &R. E. Scossiroli (1958) X-ray induced mutations in polygenic systems.Proc. Second Intern. Conf. Peaceful Uses of Atomic Energy 22: 293–297.Google Scholar
  14. Caldecott, R. S. &L. Smith (1952) A study of X-ray induced chromosomal aberrations in Barley.Cytologia 17: 224–242.Google Scholar
  15. Clark, A. M. &E. M. Kelly (1950) Differential radiosensitivity of haploid and diploid pre-pupae and pupae ofHabrobracon.-Cancer Research 10: 348–352.PubMedGoogle Scholar
  16. Conger, A. D. &A. H. Johnston (1956) Polyploidy and radiosensitivity.Nature (London) 178: 271.Google Scholar
  17. Delaunay, L. N. (1930) Die Chromosomenaberranten in der Nachkommen-Schaft von röntgenisierten Ahren einer reinen Linie vonTriticum vulgare albidum All.Z. ind. Abst. Vererb. 55: 352–355.Google Scholar
  18. Delaunay, L. N. (1931) Resultate eines dreijährigen Röntgenversuches mit Weizen.Der Züchter 3: 129–137.Google Scholar
  19. Delaunay, L. N. (1934)Experimentell erzeugte Mutationen bei Weizen. Verlag Ukr. Akad. Land. Wiss., 1–56.Google Scholar
  20. Dubinin, N. P. (1958) Mechanism of Radiation effect on heredity and problem of radiosensitivity.Intern. Conf. Peaceful Uses of Atomic Energy, Geneva,22: 374–382.Google Scholar
  21. East, E. M. (1935) Genetic reactions inNicotiana II. Phenotypic reaction patterns.Genetica,20: 414–422.Google Scholar
  22. Ehrenberg, L. &N. Nybom (1954) Ion density and biological effectiveness of radiations.Acta agr. Scand. 4: 396–418.Google Scholar
  23. Fondard, F. &F. Cabasson (1939) Influence des rayons X et des ondes courtes.C. R. Acad. Agric. France 25: 506–509.Google Scholar
  24. Ford, C. E., P. L. T. Ilbery &J. F. Loutit (1957) Further cytological observations on radiation chimaeras.J. Cellular Comp. Physiol. 50: Suppl. 1: 109–121.Google Scholar
  25. Ford, C. E., J. L. Hamerton, D. W. H. Barnes &J. F. Loutit (1956) Cytological identification of radiation chimaeras.Nature,111: 452–454.Google Scholar
  26. Fröier, K. (1943) Keimung und Triebkraft bei Hafer und Weizen nach verschiedenen Röntgendosen. (Germination and rate of sprouting in oats and wheat after various X-rays doses).Hereditas 27: 260–370.Google Scholar
  27. Fröier, K. (1946) Genetical studies on the chlorophyll apparatus in oats and wheat.Hereditas 32: 297–406.Google Scholar
  28. Gelin, O. E. V. (1953) Mitotische Störungsfrequenzen in röntgenbestrahlter Gerste.Agr. Hort. Genetica 11: 66–81.Google Scholar
  29. Gelin, O. E. V., L. Ehrenberg &S. Blixt (1958) Genetically conditioned influences on radiation sensitivity in peas.Agri. Hort. Genetica 16: 78–102.Google Scholar
  30. Gregory, W. C. (1957) Induction of useful mutations in the peanut.Brookhaven Symposia in Biology 9: 177–190.Google Scholar
  31. Gustafsson, Å. (1940) The mutation system of chlorophyll apparatus.Lunds. Univ. Arsskr. 36: 1–40.Google Scholar
  32. Gustafsson, Å. (1947) Mutations in agricultural plants.Hereditas 33: 1–100.Google Scholar
  33. Gustafsson, Å. &D. von Wettstein (1956)Mutationen und Mutationszüchtung. Handb. d. Pflanzenzücht. I. Band2: 612–699.Google Scholar
  34. Horlacher, W. R. &D. T. Killough (1933) Progressive mutations induced inGossypium hirsutum by radiations.Amer. Naturalist 67: 532–538.Google Scholar
  35. Howard, H. W. (1958) Transformation of a monochlamydius into a dichlamydius chimera by X-ray treatment.Nature (London) 182: 1620.Google Scholar
  36. Kammacher, P. A., M. S. Brown &J. S. Newman (1957) A quadruple monosomic in cotton.J. Heredity,48: 135–138.Google Scholar
  37. Kihara, H. & F. A. Lilienfeld (1949) A new synthesised 6x wheat.Proc. Eighth Intern. Congr. Genet. (Hereditas, Suppl. Vol.): 307–319.Google Scholar
  38. Konzak, C. F. &W. R. Singleton (1952) The relationship of polyploidy to the effects of thermal neutron exposure on plants.Genetics 37: 596–597.Google Scholar
  39. Lamprecht, H. (1958) Röntgen-Empfindlichkeit und genotypische Konstitution beiPisum.Agr. Hort. Genetica 14: 161–176.Google Scholar
  40. Lamprecht, H. (1958) Röntgen-Empfindlichkeit und genotypische Konstitution vonPhaseolus.Agr. Hort. Genetica 16: 196–208.Google Scholar
  41. Lamy, R. & H. J. Muller (1939) Evidence of monogenic nature of the lethal effects of radiation onDrosophila embryos. Proc. 7th Intern. Genet. Congress J. Genetics (Suppl.) p. 180–181 (1941).Google Scholar
  42. Latarjet, R. &B. Ephrussi (1949) Courbes de survive de haploides et diploides soumises aux rayons X.C. R. Acad. Sci. Paris. 229: 306–8.Google Scholar
  43. Levan, A. (1944) Experimentally induced chlorophyll mutants in flax.Hereditas 30: 225–230.Google Scholar
  44. MacKey, J. (1954a) Mutation breeding in polyploid cereals.Acta. Agric. Scand. 4: 549–557.Google Scholar
  45. Mackey, J. (1954b) Neutron and X-ray experiments in wheat and a revision of the speltoid problem.Hereditas 40: 65–180.Google Scholar
  46. Marshak, A. &M. Bradley (1944) X-ray inhibition of mitosis in relation to chromosome number.Proc. Nat. Acad. Sci. U.S. 30: 231–237.Google Scholar
  47. Matsumura, S., T. Fujii &S. Kondo (1957) Effects of X- and γ-radiations upon wheat seedlings and their modification due to temperature or polyploidy.Wheat Information Service,7: 9–10.Google Scholar
  48. McFadden, E. S. &E. R. Sears (1946) The origin ofTriticum spelta and its free threshing hexaploid relatives.J. Hered. 37: 81–89; 107–116.Google Scholar
  49. Menzel, M. Y. &M. S. Brown (1954) The tolerance ofGossypium hirsutum for deficiencies and duplications.Amer. Naturalist 88: 407–418.Google Scholar
  50. Mikaelsen, K. (1958) The effect of polyploidy on the radiosensitivity of Rye exposed to neutron radiation. (Abst.)Rad. Research 9: 154.Google Scholar
  51. Müntzing, A. (1942) Frequency of induced chlorophyll mutations in diploid and tetraploid barley.Hereditas 28: 217–221.Google Scholar
  52. Natarajan, A. T., S. M. Sikka &M. S. Swaminathan (1958) Polyploidy, Radiosensitivity and Mutation Frequency in wheats.Proc. Intern. Conf. Peaceful Uses of Atomic Energy 27: 321–331.Google Scholar
  53. Nilan, R. A. (1956)Factors governing plant radiosensitivity. Paper presented at a meeting at Michigan University, Jan. 1956.Google Scholar
  54. Nilsson-Leissner, G. (1925) Beiträge zur Genetik vonTriticum spelta andTriticum vulgare I.Hereditas 7: 1–74.Google Scholar
  55. Östergren, G., R. Morris &T. Wakonig (1958) A study inHyacinthus on chromosome size and breakability by X-rays.Hereditas 44: 1–17.Google Scholar
  56. Pal, B. P., M. S. Swaminathan &A. T. Natarajan (1956) Awning induced in wheat by treatment with radioactive phospherus.Wheat Information Service 5: 4–5.Google Scholar
  57. Ranjan, S. (1940) A preliminary note on X-ray mutants of Pusa (52) wheat.Proc. Ind. Acad. Sci. B12: 62–66.Google Scholar
  58. Rosler, P. (1928) Histologische Studien am Vegetationspunkt vonTriticum vulgare.Planta 5: 28–69.Google Scholar
  59. Sapěhin, A. A. (1935) X-ray mutants in durum wheat.Bot. Z. U.R.S.S. 20: 3–9.Google Scholar
  60. Saric, M. (1958) Studying the effect of irradiation in dependence of biological properties of the seed irrddiated.Intern. Conf. Peaceful Uses of Atomic Energy, Geneva 27, 233–248.Google Scholar
  61. Sarkar, P. &G. L. Stebbins (1956) Morphological evidence concerning the origin of the B-genome in wheat.Amer. J. Bot. 43: 297–304.Google Scholar
  62. Sax, K. &C. P. Swanson (1941) Differential sensitivity of cells to X-rays.Amer. J. Bot. 28: 52–59.Google Scholar
  63. Schkwarnikow, P. K. (1939) Mutations in seeds and its significance for a seed culture and selection of plants.Bull. Acad. Sci. U.R.S.S. 6: 1009–1054.Google Scholar
  64. Sikka, S. M., M. S. Swaminathan &D. Jagathesan (1956) A note on some X-ray induced variations in upland cotton.Ind. J. Genet. Pl. Breeding 16: 144–145.Google Scholar
  65. Smith, L (1936) Cytogenetic studies inTriticum monococcum andT. aegilopoides.Univ. Miss. Agr. Exptl. Sta., Res. Bull. 248: 1–38.Google Scholar
  66. Smith, L. (1938) Cytogenetic studies inTriticum monococcum.Genetics 23: 168.Google Scholar
  67. Smith, L. (1939) Mutants and linkage studies inTriticum monococcum andT. aegilopoides.-Univ. Miss. Agr. Exptl. Sta. Bull. 298: 1–26.Google Scholar
  68. Smith, L. (1943) Relation of polyploidy to heat and X-ray effects in the cereals.J. Heredity 34: 131–134.Google Scholar
  69. Smith, L. (1946) A comparison of the effects of heat and X-rays on dormant seeds of cereals, with special reference to polyploidy.J. Agr. Res. 73: 137–158.Google Scholar
  70. Sparrow, A. H. &L. A. Schairer (1958) The radioresistance of high polyploids.Rad. Res. 9: 137 (abstract).Google Scholar
  71. Stadler, L. J. (1929) Chromosome number and the mutation rate inAvena andTriticum.Proc. Nat. Acad. Sci. (U.S.) 15: 876–881.Google Scholar
  72. Stadler, L. J. (1930) Some genetic effects of X-rays in plants.J. Heredity 21: 3–19.Google Scholar
  73. Stadler, L. J. (1931) Hereditary mutations induced in plants by the action of X-rays.Year Book Agr. (U.S. Dept. Agr.) 1931: 287–289.Google Scholar
  74. Stadler, L. J. (1932) On the genetic nature of induced mutations in plants.Proc. 6th Intern. Congr. Genetics 1: 274–294.Google Scholar
  75. Stebbins, G. L. (1950)Variation and evolution in plants. Columbia Univ. Press., New York.Google Scholar
  76. Stebbins, G. L. (1956) Artificial polyploidy as a tool in plant breeding.Brookhaven Symp. Biol. 9: 35–52.Google Scholar
  77. Stebbins, G. L. (1957) Genetics, evolution and plant-breeding.Ind. J. Genet. Pl. Breeding 17: 129–141.Google Scholar
  78. Swaminathan, M. S. (1954a) Nature of polyploidy in some 48-chromosome species of the sectionTuberarium, genusSolanum.Genetics 39: 59–76.Google Scholar
  79. Swaminathan, M. S. (1954b) Microsporogenesis in some American commercial potato varieties.J. Heredity 45: 265–272.Google Scholar
  80. Swaminathan, M. S. (1957) Polyploidy and sensitivity to mutagens.Ind. J. Genet. Pl. Breeding 17: 296–304.Google Scholar
  81. Swaminathan, M. S. & P. Appa Rao (1959) Studies on the induction of mutations in potato (unpublished).Google Scholar
  82. Swaminathan, M. S. &B. R. Murty (1960) Aspects of asynapsis in plants. I. Random and non-random chromosome association.Genetics 44: 1271–1280.Google Scholar
  83. Swaminathan, M. S. &A. T. Natarajan (1956) Fast neutron radiation and localised chromosome breakage.Curr. Sci.,25: 279–81.Google Scholar
  84. Swaminathan, M. S. &A. T. Natarajan (1957) Polyploidy and Radiosensitivity.Nature 179: 479–480.Google Scholar
  85. Swaminathan, M. S. & K. A. Patel (1961) Mutation breeding in tobacco.Tobacco Science (in press).Google Scholar
  86. Tobias, C. A., R. K. Mortimer, R. L. Gunther &G. P. Welch (1958) The action of penetrating radiations on yeast cells.Int. Conf. Peaceful Uses of Atomic Energy, Geneva.22: 420–426.Google Scholar
  87. Tollenaar, D. (1938) Untersuchungen über Mutation bei Tabak. II. Einige künstlich erzeugte Chromosom-Mutanten.Genetica 20: 285–294.Google Scholar
  88. Watkins A. E. &S. Ellerton (1940) Variation and genetics of the awn inTriticum. T.Genetics 40: 243–270.Google Scholar
  89. Yamashita, K. (1947) X-ray induced reciprocal translocations inTriticum aegilopoides andT. monococcum.-Jap. J. Genetics 22: 34–37.Google Scholar
  90. Yamashita, K. (1957) Further studies on the synthesis of a permanent R-T-Heterozygote in Einkorn wheat.Wheat Information Service 6: 4–5.Google Scholar
  91. Zirkle, R. E. &C. A. Tobias (1953) Effect of ploidy and linear energy transfer on radiobiological survival curves.Arch. Biochem. Biophys. 47: 282–306.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff 1962

Authors and Affiliations

  • S. Bhaskaran
    • 1
  • M. S. Swaminathan
    • 1
  1. 1.Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations