Skip to main content
Log in

Diversity by inbreeding inDrosophila

  • Published:
Genetica Aims and scope Submit manuscript

Summary

  1. 1.-

    Seven different inbred lines originated from a single wild female have been tested in various environmental conditions.

  2. 2.-

    The inbred lines are shown to be largely different for size and development time as well as for viability.

  3. 3.-

    Reciprocal crosses between these inbred lines, or between these inbreds and a Control line are different for size, development time and viability in certain conditions of temperature and larval diet. The effects of temperature and larval diet on inbreds and hybrids are shown to be very different.

  4. 4.-

    The causes of diversity among the inbred lines are thought to lie partly in nuclear, and partly in cytoplasmic differences. Certain aspects of interaction between these nuclear and cytoplasmic properties are considered, and their theoretical significance discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dobzhansky, T. (1950). Genetics of natural populations XIX.—Origin of heterosis through natural selection in populations ofDrosophila subobscura.—Genetics 35: 288–302.

    PubMed  Google Scholar 

  • Dobzhansky, T. (1952).Nature and origin of heterosis.—Chapter13, of “Heterosis” edited by J. W. Gowen, Iowa State Coll. Press: 218–223.

  • Durrant, A. &K. Mather (1956). Heritable variation in a long inbred line ofDrosophila.—Genetica 27: 97–119.

    Google Scholar 

  • East, E. M. (1908). Inbreeding in corn.Rep. Conn. Agric. Exp. Sta. (1907): 419–428.

  • East, E. M. (1936). Heterosis.Genetics 21: 375–397.

    Google Scholar 

  • Fisher, R. H. (1949).The theory of inbreeding, Oliver & Boyd, Edinb. 1–120.

    Google Scholar 

  • Furtauer, K. (1940). Untersuchungen über die Beziehungen zwischen Photoperiode, Lichtintensität, sowie Temperature und der Plasmavererbung beiEpilobium.—Jahrb. f. wiss. Bot. 89: 412–460.

    Google Scholar 

  • Gowen, J. W., &L. E. Johnson (1946). On the mechanism of heterosis I. Metabolic capacity of different races ofDrosophila melanogaster for egg production.Am. Nat. 80: 149–179.

    Google Scholar 

  • Gustafsson, A. (1946). The effeet of heterozygosity on variabillty and vigor.Hereditas,32: 263–286.

    Google Scholar 

  • Gustafsson, A. (1947). The advantageous effect of deleterious mutations.Hereditas 33: 573–575.

    Google Scholar 

  • Haldane, J. B. S. (1936). The amount of heterozygosis to be expected in an approximately pure line.Journ. Gen. 32: 375–391.

    Google Scholar 

  • Heuts, M. J. (1956). Temperature adaptation inGasterosteus aculeatus.—Publ. Staz. Zool. 28: 44–61.

    Google Scholar 

  • Hull, F. H. (1945). Recurrent selection for specific combining ability in corn.J. Am. Soc. Agric. 37: 134–145.

    Google Scholar 

  • Jones, D. F. (1945). Heterosis resulting from degenerative changes.Genetics 30: 527–542.

    Google Scholar 

  • Lerner, M. (1954).Genetic homeostasis. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Lerner, M. (1954).The genetic basis of selection, John Wiley, New York.

    Google Scholar 

  • Lewis, D. (1952). Cytoplasmic heterosis of winter fruiting in tomatoes.John Innes Hort. Inst., Ann. Rep. 12-13.

  • Lints, F. A. (1960). Nucleo-cytoplasmic interaction inDrosophila melanogasterGenetica 31: 188–239.

    PubMed  Google Scholar 

  • Michaelis, P. (1935). Erhöhte Wachstumintensität und Pilzresistenz durch Plasmavererbung, sowie über die Bedeutung des Plasmas bei Kreuzungsschwierigkeiten.Züchter 7:74–77.

    Google Scholar 

  • Michaelis, P. (1939). Keimstimmung und Plasmavererbung beiEpilobium.—Jahrb. wiss. Bot. 88:69–88.

    Google Scholar 

  • Precht, H., J. Christophersen &H. Hensel (1955).Temperatur und Leben. Springer Verlag, Berlin-Göttingen:1–514.

    Google Scholar 

  • Rasmusson, J. (1934). A contribution to the theory of quantitative character inheritance.Hereditas 18:245–261.

    Google Scholar 

  • Reeve, E. C. R. (1957). Inbreeding with selection and linkage. I. Selfing.Ann. Hum. Gen. 21:277–288.

    Google Scholar 

  • Reeve, E. C. R. &J. C. Gower (1958). Inbreeding with selection and linkage II. Sib-mating.Ann. Hum. Gen. 23: 36–49.

    Google Scholar 

  • Robertson, F. W. (1957). Studies in quantitative inheritance XI. Genetic and environmental correlation between body size and egg production inDrosophila melanogaster.—Journ. Gen. 55:428–443.

    Google Scholar 

  • Sang, J. H. (1956). The quantitative nutritional requirements ofDrosophila melanogaster.—J. exptl. Biol. 33:45–72.

    Google Scholar 

  • Shull, A. F. (1912). The influence of inbreeding on vigor inHydatina senta.—Biol. Bull. 24: 1–14.

    Google Scholar 

  • Shull, G. H. (1914). Duplicate genes for capsule form inBursa bursa-pastorisZeitschr. Abst. u. Vererbl. 12:97–149.

    Google Scholar 

  • Simpson, G. G., A. Roe &R. C. Lewontin (1960).Quantitative Zoology. Harcourt, Brace & Co., New York: 1–440.

    Google Scholar 

  • Snedecor, G. W. (1946).Statistical Methods, Coll. Press, Ames, Iowa.

    Google Scholar 

  • Spaas, J. &M. J. Heuts (1958). Contributions to the comparative physiology and genetics of the EuropeanSalmonidae II. Physiologie et Génétique du développement embryonnaire.Act. Hydr. Hydrogr. et. Protistol. 12: 1–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lints, F.A. Diversity by inbreeding inDrosophila . Genetica 32, 177–199 (1962). https://doi.org/10.1007/BF01816094

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01816094

Keywords

Navigation