Abstract
We describe a new class of Lie bialgebroids associated with Poisson-Nijenhuis structures.
Similar content being viewed by others
References
Beltrán, J. V. and Monterde, J.: Poisson-Nijenhuis structures and the Vinogradov bracket,Ann. Global Anal. Geom. 12 (1994), 65–78.
Carathéodory, C.:Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung, Teubner, Berlin 1935; English translation:Calculus of Variations and Partial Differential Equations of the First Order, vol. 1, Holden-Day, 1965, chapter 9.
Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Publ. Univ. Lyon-I, 2-A (1987).
Dorfman, I. Ya.:Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993.
Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations,Soviet Math. Dokl. 27(1) (1983), 68–71.
Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems,Progr. Theoret. Phys. 68 (1982), 1082–1104.
Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids,Acta Appl. Math. 41 (1995), 153–165.
Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures,Ann. Inst. Henri Poincaré, Phys. Théor. 53 (1990), 35–81.
Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie, in:Elie Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série, Soc. Math. France, 1985.
Lie, S.: Zur Theorie der Transformationsgruppen,Christ. Forh. Aar., No. 13 (1888), reprinted inGes. Abh., V, XXIII, 553–557.
Lie, S.:Theorie der Transformationsgruppen, Zweitner Abschnitt, Teubner, Leipzig 1890.
Liu, Zhang-Ju, Weinstein, A. and Xu, Ping: Manin triples for Lie bialgebroids, Preprint, 1995.
Mackenzie, K.:Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, 1987.
Mackenzie, K. and Xu, Ping: Lie bialgebroids and Poisson groupoids,Duke Math. J. 73 (1994). 415–452.
Magri, F. and Morosi, C.: A Geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S19, University of Milan, 1984.
Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,C.R. Acad. Sci. Paris A 264 (1967), 245–248.
Vaisman, I.: Poisson-Nijenhuis manifolds revisited,Rend. Sem. Mat. Univ. Politec. Torino 52(4) (1994), 377–394.
Weinstein, A.: Sophus Lie and symplectic geometry,Expo. Math. 1, 95–96 (1983).
Weinstein, A.: The local structure of Poison manifolds,J. Differential Geom. 18 (1983), 523–557.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kosmann-Schwarzbach, Y. The lie bialgebroid of a Poisson-Nijenhuis manifold. Lett Math Phys 38, 421–428 (1996). https://doi.org/10.1007/BF01815524
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01815524