Skip to main content
Log in

The lie bialgebroid of a Poisson-Nijenhuis manifold

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a new class of Lie bialgebroids associated with Poisson-Nijenhuis structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beltrán, J. V. and Monterde, J.: Poisson-Nijenhuis structures and the Vinogradov bracket,Ann. Global Anal. Geom. 12 (1994), 65–78.

    Google Scholar 

  2. Carathéodory, C.:Variationsrechnung und Partielle Differentialgleichungen Erster Ordnung, Teubner, Berlin 1935; English translation:Calculus of Variations and Partial Differential Equations of the First Order, vol. 1, Holden-Day, 1965, chapter 9.

    Google Scholar 

  3. Coste, A., Dazord, P. and Weinstein, A.: Groupoïdes symplectiques, Publ. Univ. Lyon-I, 2-A (1987).

  4. Dorfman, I. Ya.:Dirac Structures and Integrability of Nonlinear Evolution Equations, Wiley, New York, 1993.

    Google Scholar 

  5. Drinfeld, V. G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of the classical Yang-Baxter equations,Soviet Math. Dokl. 27(1) (1983), 68–71.

    Google Scholar 

  6. Fuchssteiner, B.: The Lie algebra structure of degenerate Hamiltonian and bi-Hamiltonian systems,Progr. Theoret. Phys. 68 (1982), 1082–1104.

    Google Scholar 

  7. Kosmann-Schwarzbach, Y.: Exact Gerstenhaber algebras and Lie bialgebroids,Acta Appl. Math. 41 (1995), 153–165.

    Google Scholar 

  8. Kosmann-Schwarzbach, Y. and Magri, F.: Poisson-Nijenhuis structures,Ann. Inst. Henri Poincaré, Phys. Théor. 53 (1990), 35–81.

    Google Scholar 

  9. Koszul, J.-L.: Crochet de Schouten-Nijenhuis et cohomologie, in:Elie Cartan et les mathématiques d'aujourd'hui, Astérisque, hors série, Soc. Math. France, 1985.

  10. Lie, S.: Zur Theorie der Transformationsgruppen,Christ. Forh. Aar., No. 13 (1888), reprinted inGes. Abh., V, XXIII, 553–557.

  11. Lie, S.:Theorie der Transformationsgruppen, Zweitner Abschnitt, Teubner, Leipzig 1890.

    Google Scholar 

  12. Liu, Zhang-Ju, Weinstein, A. and Xu, Ping: Manin triples for Lie bialgebroids, Preprint, 1995.

  13. Mackenzie, K.:Lie Groupoids and Lie Algebroids in Differential Geometry, London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, 1987.

  14. Mackenzie, K. and Xu, Ping: Lie bialgebroids and Poisson groupoids,Duke Math. J. 73 (1994). 415–452.

    Google Scholar 

  15. Magri, F. and Morosi, C.: A Geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S19, University of Milan, 1984.

  16. Pradines, J.: Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,C.R. Acad. Sci. Paris A 264 (1967), 245–248.

    Google Scholar 

  17. Vaisman, I.: Poisson-Nijenhuis manifolds revisited,Rend. Sem. Mat. Univ. Politec. Torino 52(4) (1994), 377–394.

    Google Scholar 

  18. Weinstein, A.: Sophus Lie and symplectic geometry,Expo. Math. 1, 95–96 (1983).

    Google Scholar 

  19. Weinstein, A.: The local structure of Poison manifolds,J. Differential Geom. 18 (1983), 523–557.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmann-Schwarzbach, Y. The lie bialgebroid of a Poisson-Nijenhuis manifold. Lett Math Phys 38, 421–428 (1996). https://doi.org/10.1007/BF01815524

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01815524

Mathematics Subject Classifications (1991)

Key words

Navigation