Advertisement

Structural optimization

, Volume 14, Issue 2–3, pp 100–107 | Cite as

Interior point techniques for optimal control of variational inequalities

  • A. Leôntiev
  • J. Herskovits
Research Papers

Abstract

This paper is devoted to a new application of an interior point algorithm to solve optimal control problems of variational inequalities. We propose a Lagrangian technique to obtain a necessary optimality system. After the discretization of the optimality system we prove its equivalence to Karush-Kuhn-Tucker conditions of a nonlinear regular minimization problem. This problem can be efficiently solved by using a modification of Herskovits' interior point algorithm for nonlinear optimization. We describe the numerical scheme for solving this problem and give some numerical examples of test problems in 1-D and 2-D.

Keywords

Civil Engineer Control Problem Variational Inequality Test Problem Minimization Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbu, V. 1984:Optimal control of variational inequalities. Boston: PitmanGoogle Scholar
  2. Barbu, V.; Korman, P. 1991: Approximating optimal control for elliptic obstacle problem by monotone iteration schemes.Numer. Func. Anal. Optimiz. 12, 429–442Google Scholar
  3. Bazaraa, M.S.; Sherali, H.D.; Shetty, C.M. 1993:Nonlinear programming. Theory and algorithms. New York: John WileyGoogle Scholar
  4. Bergounioux, M. 1995: Optimal conditions for optimal control of elliptic problems governed by variational inequalities.Preprint, Université d'Orléans 95-01 Google Scholar
  5. Bermudez, A.; Saguez, C. 1985: Optimal control of variational inequalities.Control & Cybernetics 14, 9–30Google Scholar
  6. Bermudez, A.; Saguez, C. 1987: Optimal control of a Signorini problem.SIAM J. Control & Optimiz. 25, 576–582Google Scholar
  7. Duvaut, G.; Lions, J.-L. 1972:Les inéquations en mécanique et en physique. Paris: DunodGoogle Scholar
  8. Kinderlehrer, D.; Stampacchia, G. 1980:An introduction to variational inequalities and their applications. New York: Academic PressGoogle Scholar
  9. Ekeland, I.; Temam, R. 1976:Convex analysis and variational problems. North-Holland Publishing CompanyGoogle Scholar
  10. Haslinger, J.; Neittaanmäki, P. 1988:Finite element approximation for optimal shape design: theories and applications. New York: John WileyGoogle Scholar
  11. Herskovits, J.N. 1986: A two-stage feasible directions algorithm for nonlinear constrained optimization.Math. Prog. 36, 19–38Google Scholar
  12. Herskovits, J.N. 1992: An interior point technique for nonlinear optimization.Research Report, INRIA, BP 105, 78153 Le Chesnay CEDEX, France,1808 Google Scholar
  13. Herskovits, J.N. 1993: An interior points methods for nonlinearly constrained optimization. In: Rozvany, G.I.N. (ed.)Optimization of large structural systems (Proc. NATO/DFG ASI, held in Berchtesgaden, Germany, 1991), pp. 589–608. Dordrecht: KluwerGoogle Scholar
  14. Leôntiev, A.N. 1994: Existence of a Lagrange multiplier for the control problem of a variational inequality.Control & Cybernetics 23, 809–812Google Scholar
  15. Lions, J.-L. 1969:Quelques méthodes de résolution des problèmes aux limites non linéares. Paris: DunodGoogle Scholar
  16. Luenberger, D.G. 1984:Linear and nonlinear programming (2-nd edition). Addison-WesleyGoogle Scholar
  17. Mignot, F. 1976: Contrôle dans les inéquations variationnelles elliptiques.J. Func. Anal. 22, 130–185Google Scholar
  18. Puel, J.-P. 1987: Some results on optimal control for unilateral problems.Lecture Notes in Control and Information Sciences 114, 225–235Google Scholar
  19. Vautier, I.; Salaun, M.; Herskovits, J.N. 1993: Application of an interior point algorithm to the modeling of unilateral contact between spot-welded shells. In: Herskovits, J.N. (ed.)Structural Optimization '93. COPPE: Rio de JaneiroGoogle Scholar
  20. Zouain, N.A.; Herskovits, J.N.; Borges, L.A.; Feijóo, R.A. 1993: An iterative algorithm for limit analysis with nonlinear yield functions.Int. J. Solids & Struct. 30, 1397–1417Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • A. Leôntiev
    • 1
  • J. Herskovits
    • 1
  1. 1.PEM COPPE/Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations