Skip to main content
Log in

Heat transfer solutions in laminar co-current flow of immiscible liquids

Lösungen für die Wärmeübertragung von unvermischbaren Flüssigkeiten in einer laminaren Gleichströmung

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Thermal entry region solutions are analytically determined for horizontal, co-current laminar flow of immiscible liquids in direct contact, inside circular tubes and parallel plate channels. The related eigenvalue problem for such a composite media is readily solved by extending the ideas in the recently advanced sign-count method. It is assumed a core-annular flow configuration for circular tubes and sheat-core flow for the parallel plates channel, without consideration of interface instabilities and stratified flow. First, the velocity problem is solved for fully developed flow and pumping power expressions established for different operating conditions. Then, the temperature problem is analytically handled to yield expressions for quantities of practical interest such as total heat exchange rates, along the duct length and, again, for different flow rates and pressure drop requirements. The analysis is illustrated through consideration of an application dealing with pumping of a very viscous oil with the addition of an external thin layer of a less viscous fluid (water). Pumping power and total heat exchange are then evaluated for both geometries and critically compared to the single fluid flow problem.

Zusammenfassung

Hier sind Lösungen für die thermische Eintritts-strecke von horizontalen, laminaren Gleichströmungen in unvermischbaren Flüssigkeiten, die in direktem Kontakt untereinander sind, analytisch bestimmt worden. Die Lösungen gelten für Gleichströmungen in Röhren und in parallelen flachen Kanälen. Das betreffende Eigenwertproblem für solch ein zusammengesetztes Medium ist vollkommen mit dem Gedanken des kürzlich weiterentwickelten Zeichenzählverfahrens gelöst worden. Für die Rohre sind kreisring- und kernförmige Strömungen und für die parallelen Plattenkanäle Schichtkernströmungen angenommen worden. Hierbei ist die Grenzflächeninstabilität nicht in Betracht gezogen worden. Als erstes ist das Geschwindigkeitsproblem für eine vollkommen entwickelte Strömung gelöst und es sind Ausdrücke für die Pumpleistung für verschiedene Betriebsbedingungen ermittelt worden. Dann ist das Temperaturproblem analytisch behandelt worden, um Ausdrücke für die Größen von praktischem Interesse zu erzielen, wie die gesamte Wärmeaustauschrate über die Kanallänge für verschiedene Strömungsgeschwindigkeiten und Druckverlustanforderungen. Die Berechnung ist durch die Betrachtung eines Anwendungsbeispiels veranschaulicht worden, bei dem sehr zähflüssiges Öl mit einer zusätzlichen äußeren, dünnen Schicht, die weniger zähflüssig ist, gepumpt wurde. Die Pumpleistung und der gesamte Wärmeaustausch sind für beide Geometrien ausgewertet und kritisch mit dem einfachen Strömungsproblem von Fluiden verglichen worden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k m :

thermal conductivities (m=1 or 2)

\(\hat k = \frac{{k_1 }}{{k_2 }}\)=k 1/k 2 :

thermal conductivities ratio

\(\bar K = - \frac{{dp}}{{dz}}\) :

axial pressure gradient term

\(\dot m\) :

total flow rate

\(\dot m_m \) :

flow rates for each stream (m=1 or 2)

L :

duct's length

r 1 :

dimensional interface position

r 2 :

tube radius or half the distance between parallel-plates

T 0m :

inlet fluid temperatures (m=1 or 2)

T w :

duct wall temperature

\(\bar u\) :

average flow velocity

u m(r):

velocity fields (m=1 or 2)

\(\bar u_m \) :

average flow velocities for each stream (m=1 or 2)

\(\bar \alpha \) :

as defined in Eq. (8e)

\(\hat \alpha = \frac{{\alpha _1 }}{{\alpha _2 }}\) :

thermal diffusivities ratio

α m :

thermal diffusivities (m=1 or 2)

δ :

dimensionless interface position

λ i :

eigenvalues of problem (10)

ψ mi(R):

eigenfunctions of problem (10), (m=1 or 2)

\(\hat \mu = \frac{{\mu _2 }}{{\mu _1 }}\) :

viscosities ratio

μ m :

viscosities (m=1 or 2)

m=1 or 2:

internal and external fluid quantity, respectively

i :

order of eigenvalue and related quantities

*:

quantities for single fluid (internal) flow situation

References

  1. Shah, R. K.; London, A. L.: Laminar flow forced convection in ducts. New York: Academic Press 1978

    Google Scholar 

  2. Cotta, R. M.; Özisik, M. N.: Thermally developing concurrent-flow circular double-pipe heat exchanger analysis. 8th int. Heat Transfer Conf., San Francisco, v. 6 (August 1986) 2805–2810

  3. Rice, R. G.; Marshall, R. J.: Short penetration models for direct and indirect contact, cocurrent heat transfer. Can. J. Chem. Eng. 53 (1975) 453–455

    Google Scholar 

  4. Bentwich, M.; Sideman, S.: Temperature distribution and heat transfer in annular two-phase (liquid-liquid) flow. Can. J. Chem. Eng. 42 (1964) 9–12

    Google Scholar 

  5. Yalvac, S.; Kisakurek, B.: Direct contact heat transfer between immiscible liquids in turbulent pipe flow. Two-Phase Flow and Heat Transfer, V. III, Proc. of Nato Advanced Study Institute, Istanbul-Turkey. (August, 1976) 16–27

  6. Leib, T. M.; Fink, M.; Hasson, D.: Heat transfer in vertical annular laminar flow of two immiscible liquids. Int. J. Multiphase Flow 3 (1977) 533–549

    Article  Google Scholar 

  7. Everage, A. E. Jr.: Theory of stratified bicomponent flow of polymer melts. I — Equilibrium newtonian tube flow. Trans. Soc. Rheology 17 (1973) 629–646

    Article  Google Scholar 

  8. Ooms, G.; Segal, A.; Vendeer Wees, A. J.; Meerhoff, R.; Oliemans, R. V. A.: A theoretical model for core-annular flow of a very viscous oil core and a water annulus through a horizontal pipe. Int. J. Multiphase Flow 10 (1984) 41–60

    Article  Google Scholar 

  9. Oliemans, R. V. A.; Ooms, G.; Wu, H. L.; Duijvestijn, A.: Coreannular oil/water flow: — The turbulent-lubrificating-film, model and measurements in a 5 cm pipe loop, Int. J. Multiphase Flow 13 (1987) 23–31

    Article  Google Scholar 

  10. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N.: Transport Phenomena. New York: John Wiley 1960

    Google Scholar 

  11. Wang, C.; Chester, C.; Charles, M. E.: Cocurrent stratified flow of immiscible liquids: — Velocity distribution and pressure gradient in the laminar-laminar and laminar-turbulent regimes. Can. J. Chem. Eng. 59 (1981) 668–676

    Google Scholar 

  12. Agrawall, S.S.; Gregory, G. A.; Govier G. W.: An analysis of horizontal stratified two-phase flow in pipes. Can. J. Chem. Eng. 51 (1973)

  13. Mikhailov, M. D.; Özisik, M. N.: Unified analysis and solutions of heat and mass diffusion. New York: John Wiley 1984

    Google Scholar 

  14. Cotta, R. M.; Nogueira, E.: On the eigenvalues basic to diffusion through composite media. Appl. & Computational Math. 7 (1988) 201–213

    Google Scholar 

  15. Cotta, R. M.; Özisik, M. N.: Laminar forced convection of power-law non-newtonian fluids inside ducts. Wärme-Stoff-übertrag. 20 (1986) 211–218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, E., Cotta, R.M. Heat transfer solutions in laminar co-current flow of immiscible liquids. Wäarme- und Stoffübertragung 25, 361–367 (1990). https://doi.org/10.1007/BF01811560

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01811560

Keywords

Navigation