Advertisement

Absence of hepatic molybdenum cofactor: An inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase

  • S. K. Wadman
  • M. Duran
  • F. A. Beemer
  • B. P. Cats
  • J. L. Johnson
  • K. V. Rajagopalan
  • J. M. Saudubray
  • H. Ogier
  • C. Charpentier
  • R. Berger
  • G. P. A. Smit
  • J. Wilson
  • S. Krywawych
Article

Abstract

Five patients with a combined deficiency of xanthine dehydrogenase, sulphite oxidase and, probably, also of aldehyde oxidase are described. This remarkable coincidence of three inborn errors of metabolism in a single individual was demonstrated to result from a deficiency of the ‘molybdenum cofactor’, an essential constituent of all three enzymes. The main biochemical findings in these patients included: hypouricaemia, xanthinuria, an increased excretion of sulphite, thiosulphate andS-sulphocysteine and a decreased excretion of inorganic sulphate. Plasma molybdenum was normal. The ultimate diagnosis was made by the measurement of ‘molybdenum cofactor’ in a liver biopsy specimen in three out of five patients.

The clinical hallmarks in these patients were: feeding difficulties, mental retardation, neurological symptoms, lens dislocation, an abnormal muscle tone, myoclonia and an abnormal physiognomy. The majority of these were already present in the neonatal period. So far, attempts at treatment have been unsuccessful.

Keywords

Molybdenum Inborn Error Sulphite Thiosulphate Biochemical Finding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumrad, N. N., Schneider, A. J., Steel, D. and Rogers, L. S. Amino acid intolerance during prolonged total parenteral nutrition reversed by molybdate therapy.Am. J. Clin. Nutr. 34, (1981) 2551–2559PubMedGoogle Scholar
  2. Cole, D. E. C. and Scriver, C. R. Microassay of inorganic sulfate in biological fluids by controlled flow anion chromatography,J. Chromatogr. 225 (1981) 359–368PubMedGoogle Scholar
  3. Duran, M., Beemer, F. A., van der Heiden, C., Korteland, J., de Bree, P. K., Brink, M. and Wadman, S. K. Combined deficiency of xanthine oxidase and sulphite oxidase: a defect of molybdenum metabolism or transport?J. Inher. Metab. Dis. 1 (1978) 175–178PubMedGoogle Scholar
  4. Frayha, R. A., Salti, I. S., Araout, R. A., Katchadurian, A. and Uhtman, S. M. Hereditary xanthinuria, report on three patients and short review of the literature.Nephron 19 (1977) 328–332PubMedGoogle Scholar
  5. Irreverre, F., Mudd, S. H., Heizer, W. D. and Laster, L. Sulfite oxidase deficiency: Study of a patient with mental retardation, dislocated ocular lenses, and abnormal urinary excretion of S-sulfo-L-cysteine, sulfite and thiosulfate.Biochem. Med. 1 (1967) 187–217Google Scholar
  6. Johnson, J. L. The molybdenum cofactor common to nitrate reductase, xanthine dehydrogenase and sulphite oxidase. In Coughlan, M. P. (ed.)Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980, pp. 345–383Google Scholar
  7. Johnson, J. L., Waud, W. R., Rajagopalan, K. V., Duran, M., Beemer, F. A. and Wadman, S. K. Inborn error of molybdenum metabolism. Combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor.Proc. Natl. Acad. Sci. USA 77 (1980a) 3715–3719PubMedGoogle Scholar
  8. Johnson, J. L., Hainline, B. E. and Rajagopalan, K. V. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase, and nitrate reductase.J. Biol. Chem. 255 (1980b) 1783–1786PubMedGoogle Scholar
  9. Johnson, J. L. and Rajagopalan, K. V. The structural and metabolic relationship between the molybdenum cofactor and urothione.Proc. Natl. Acad. Sci. U.S.A. 79 (1982) 6856–6860PubMedGoogle Scholar
  10. Shih, V. E., Abroms, I. F., Johnson, J. L., Carney, M., Mandell, R., Robb, R. M., Clotherty, J. P. and Rajagopalan, K. V. Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfurmetabolism.N. Engl. J. Med. 297 (1977) 1022–1028PubMedGoogle Scholar
  11. Shih, V. E., Carney, M. M. and Mandell, R. A simple screening test for sulfite oxidase deficiency: detection of urinary thiosulfate by a modification of Sörbo's method.Clin. Chim. Acta 95 (1979) 143–146PubMedGoogle Scholar
  12. Wadman, S. K., de Bree, P. K., van Gennip, A. H., Stoop, J. W., Zegers, B. J., Staal, G. E. J. and Siegenbeek van Heukelom, L. H. Urinary purines in a patient with a severely defective T cell immunity and a purine nucleoside phosphorylase deficiency. In Müller, M. M., Kaiser E. and Seegmiller, J. E. (eds.)Purine Metabolism in Man II, Plenum, New York, (1977) pp. 471–476Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1983

Authors and Affiliations

  • S. K. Wadman
    • 1
  • M. Duran
    • 1
  • F. A. Beemer
    • 1
  • B. P. Cats
    • 1
  • J. L. Johnson
    • 2
  • K. V. Rajagopalan
    • 2
  • J. M. Saudubray
    • 3
  • H. Ogier
    • 3
  • C. Charpentier
    • 4
  • R. Berger
    • 5
  • G. P. A. Smit
    • 5
  • J. Wilson
    • 6
  • S. Krywawych
    • 7
  1. 1.University Children's Hospital ‘Het Wilhelmina Kinderziekenhuis’UtrechtThe Netherlands
  2. 2.Department of BiochemistryDuke University Medical CenterDurhamUSA
  3. 3.Hôpital des Enfants MaladesParis, Cédex 15France
  4. 4.Laboratoire BiochimieHôpital de BicêtreKremlin BicêtreFrance
  5. 5.Department of PediatricsUniversity of GroningenGroningenThe Netherlands
  6. 6.The Hospital for Sick ChildrenLondonEngland
  7. 7.Rayne InstituteUniversity College Hospital Medical SchoolLondonEngland

Personalised recommendations