Origins of life and evolution of the biosphere

, Volume 22, Issue 5, pp 309–319 | Cite as

The evolution of aminoacyl-tRNA synthetases, the biosynthetic pathways of amino acids and the genetic code

  • Massimo Di Giulio


In this paper the partition metric is used to compare binary trees deriving from (i) the study of the evolutionary relationships between aminoacyl-tRNA synthetases, (ii) the physicochemical properties of amino acids and (iii) the biosynthetic relationships between amino acids. If the tree defining the evolutionary relationships between aminoacyl-tRNA synthetases is assumed to be a manifestation of the mechanism that originated the organization of the genetic code, then the results appear to indicate the following: the hypothesis that regards the genetic code as a map of the biosynthetic relationships between amino acids seems to explain the organization of the genetic code, at least as plausibly as the hypotheses that consider the physicochemical properties of amino acids as the main adaptive theme that lead to the structuring of the code.


Organic Chemistry Geochemistry Physicochemical Property Biosynthetic Pathway Evolutionary Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B. M.: 1986,Am. Zool. 26, 781–796.Google Scholar
  2. Allf-Steinberger, C.: 1969,Proc. Natl. Acad. Sci. USA 64, 584–591.PubMedGoogle Scholar
  3. Burbaum, J. J., Strazyk, R. M., and Schimmel, P.: 1990,Proteins 7, 99–111.PubMedGoogle Scholar
  4. Di Giulio, M.: 1989a,J. Mol. Evol. 29, 191–201.PubMedGoogle Scholar
  5. Di Giulio, M.: 1989b,J. Mol. Evol. 29, 288–293.PubMedGoogle Scholar
  6. Di Giulio, M.: 1991,Z. Naturforsch. 46c, 305–312.Google Scholar
  7. Epstein, C. J.: 1966,Nature 210, 25–28.PubMedGoogle Scholar
  8. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D.: 1990,Nature 347, 203–206.PubMedGoogle Scholar
  9. Fisher, R. A.: 1950,Statistical Methods for Research Workers, 11-th ed., p. 99, Oliver & Boyd, Edinburgh, London.Google Scholar
  10. Fitch, W. M. and Upper, K.: 1987,Cold Spring Harbor Sym. Quant. Biol. 52, 759–767.Google Scholar
  11. Gilbert, W.: 1986,Nature 319, 618.Google Scholar
  12. Goldberg, A. L. and Wittes, R. E.: 1966,Science 153, 420–424.PubMedGoogle Scholar
  13. Grantham, R.: 1974,Science 185, 862–864.PubMedGoogle Scholar
  14. Hendy, M. D., Little, C. H. C., and Penny, D.: 1984, Soc. Ind, Appl. Math. (SIAM),J. Appl. Math. 44, 1054–1067.Google Scholar
  15. Jungck, J. R.: 1978,J. Mol. Evol. 11, 211–224.PubMedGoogle Scholar
  16. Li, W-H.: 1981,Proc. Natl. Acad. Sci. USA 78, 1085–1089.PubMedGoogle Scholar
  17. Miyata, T., Miyazawa, S., and Yasunaga, T.: 1979,J. Mol. Evol. 12, 219–236.PubMedGoogle Scholar
  18. Nagel, G. M. and Doolittle, R. F.: 1991,Proc. Natl. Acad. Sci. USA 88, 8121–8125.PubMedGoogle Scholar
  19. Nei, M.: 1975,Molecular Population Genetics and Evolution, North-Holland, Amsterdam, pp. 199–201.Google Scholar
  20. Penny, D., Foulds, L. R., and Hendy, M. D.: 1982,Nature 297, 197–200.PubMedGoogle Scholar
  21. Penny, D. and Hendy, M. D.: 1985,Syst. Zool. 34, 75–82.Google Scholar
  22. Robinson, D. F. and Foulds, L. R.: 1979, inLecture Notes in Mathematics. Volume 748, Springer-Verlag, Berlin, pp. 119–126.Google Scholar
  23. Robinson, D. F. and Foulds, L. R.: 1981,Math. Biosci. 53, 131–147.Google Scholar
  24. Saitou, N. and Nei, M.: 1987,Mol. Biol. Evol. 4, 406–425.PubMedGoogle Scholar
  25. Schimmel, P.: 1987,Annu. Rev. Bioch. 56, 125–158.Google Scholar
  26. Schimmel, P.: 1991,Trends Biochem. Sci. 16, 1–3.PubMedGoogle Scholar
  27. Sjostrom, M. and Wold, S.: 1985,J. Mol. Evol. 22, 272–277.PubMedGoogle Scholar
  28. Sokal, R. R. and Michener, C. D.: 1958,Univ. Kansas Sci. Bull. 38, 1409–1438.Google Scholar
  29. Sonneborn, T. M.: 1965, in Bryson, V. and Vogel, R. J. (eds.),Evolving Genes and Proteins, Academic Press, New York, pp. 377–397.Google Scholar
  30. Sourdis, J. and Nei, M.: 1988,Mol. Biol. Evol. 5, 298–311.PubMedGoogle Scholar
  31. Weber, A. L. and Lacey, J. C. Jr.: 1978,J. Mol. Evol. 11, 199–210.PubMedGoogle Scholar
  32. Weiner, A. M. and Maizels, N.: 1980,Proc. Natl. Acad. Sci. USA 77, 1083–1086.PubMedGoogle Scholar
  33. White, H. B. III.: 1982, in Everse, J., Anderson, B. and You, K., (eds.)The Pyridine Nucleotide Coenzymes, Academic, New York, pp. 1–17.Google Scholar
  34. Woese, C. R., Dugre, D. H., Dugre, S. A., Kondo, M., and Saxinger., W. C.: 1966,Colding Spring Harbor Symp. Quant. Biol. 31, 723–736.Google Scholar
  35. Wolfenden, R. V., Cullis, P. M., and Southgate, C. C. B.: 1979,Science 206, 575–577.PubMedGoogle Scholar
  36. Wong, J. T-F.: 1975,Proc. Natl. Acad. Sci. USA 72, 1909–1912.PubMedGoogle Scholar
  37. Wong, J. T-F.: 1980,Proc. Natl. Acad. Sci. USA 77, 1083–1086.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Massimo Di Giulio
    • 1
  1. 1.International Institute of Genetics and BiophysicsCNRNaples, NapoliItaly

Personalised recommendations