Primitive elements in finite fields and costas arrays

  • Stephen D. Cohen
  • Gary L. Mullen


In [7] Golomb made four conjectures concerning the existence of pairs of primitive elements in finite fields. In this note we resolve each of the conjectures in the affirmative. As a consequence several conjectured classes of Costas arrays do indeed exist.


Artificial Intelligence Finite Field Computer Hardware Algebraic Manipulation Primitive Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen, S.D.: Primitive roots in the quadratic extension of a finite field. J. London Math. Soc.27(2), 221–228 (1983)Google Scholar
  2. 2.
    Cohen, S.D.: Consecutive primitive roots in a finite field. Proc. Am. Math. Soc.93, 189–197 (1985)Google Scholar
  3. 3.
    Cohen, S.D.: Consecutive primitive roots in a finite field, II. Proc. Am. Math. Soc.94, 605–611 (1985)Google Scholar
  4. 4.
    Cohen, S.D.: Pairs of primitive roots. Mathematika32, 276–285 (1985)Google Scholar
  5. 5.
    Cohen, S.D.: Primitive elements and polynomials with arbitrary trace, Discrete Math.83, 1–7 (1990)Google Scholar
  6. 6.
    Costas, J.P.: Medium constraints on sonar design and performance. EASCON Convention Record, 68A–68L (1975)Google Scholar
  7. 7.
    Golomb, S.W.: Algebraic constructions for Costas arrays. J. Comb. TheoryA 37, 13–21 (1984)Google Scholar
  8. 8.
    Golomb, S.W., Taylor, H.: Constructions and properties of Costas arrays. Proc. IEEE72, 1143–1163 (1984)Google Scholar
  9. 9.
    Jungnickel, D., Vanstone, S.A.: On primitive polynomials over finite fields. J. Algebra124, 337–353 (1989)Google Scholar
  10. 10.
    Moreno, O.: On the existence of a primitive quadratic of trace 1 overGF(p m). J. Comb. TheoryA 51, 104–110 (1989)Google Scholar
  11. 11.
    Qi, S.: On primitive roots in a finite field. J. Sichuan U. Nat. Sci. Ed.25, 133–139 (1988)Google Scholar
  12. 12.
    Shen, Z.Q.: Some results on Golomb's conjecture (Chinese, Eng. Summary), Sichuan Daxue Xuebao (4), 22–24 (1985)Google Scholar
  13. 13.
    Truong, T.K., Reed, I.S.: Golomb's conjecture is true for certain classes of finite fields. Kexue Tongbao (Eng. Ed.)28(10), 1310–1312 (1983)Google Scholar
  14. 14.
    Wang, J.-P.: On Golomb's conjecture. Chinese Science (to appear)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Stephen D. Cohen
    • 1
  • Gary L. Mullen
    • 2
  1. 1.Department of MathematicsUniversity of Glasgow, University GardensGlasgowScotland
  2. 2.Mathematics DepartmentThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations