International Journal of Theoretical Physics

, Volume 11, Issue 4, pp 213–247 | Cite as

Cayley parametrization of semisimple lie groups and its application to physical laws in a (3+1)-dimensional cubic lattice

  • Miguel Lorente
Article

Abstract

The assumption of a discrete space-time is expressed mathematically by restricting the space-time variables to the field of integer numbers, and by restricting to the field of rational numbers the functions describing the laws of motion. This rational character must be preserved under the transformations connecting different systems of reference. The Cayley parametrization of semisimple Lie groups, and in particular of the Lorentz group, satisfies this condition if we require these parameters to take only integer values. The rational points of the most frequently used transcendental functions are obtained with the help of the integer complex and hypercomplex numbers. Some applications are made concerning the laws of motion in special relativity defined over a (3+1)-dimensional cubic lattice.

Keywords

Field Theory Elementary Particle Quantum Field Theory Rational Number Rational Character 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghassi, J. J., Roman, P. and Santilli, R. M. (1970).Physical Review D1, 2753; (1971).Il Nuovo Cimento, 5A, 551.Google Scholar
  2. Ahmavaara, Y. (1965).Journal of Mathematical Physics 6, 87, 220; (1966).7, 197, 201.Google Scholar
  3. Bopp, F. (1967).Zeitschrift für Physik 200, 117, 133, 142;205, 103.Google Scholar
  4. Carmichael, (1915).Diophantine Analysis, p. 38. John Wiley, New York.Google Scholar
  5. Castell, L. (1966).Il Nuovo Cimento 46, 1; (1967).49, 285.Google Scholar
  6. Cayley, A. (1846).Journal für die reine und angewandte Mathematik 32, 1; (1889).Coll. Mathematical Papers, Cambridge, 117. See also Weyl, H. (1946).The Classical Groups, pp. 56, 169 and 177. Princeton.Google Scholar
  7. Darling, B. T. (1950).Physical Review 80, 460.Google Scholar
  8. Feynman, R. P. (1949).Physical Review 76, 749.Google Scholar
  9. Flint, H. T. and Williamson, E. M. (1953).Physical Review 90, 318.Google Scholar
  10. Greenspan, D. (1973).Foundations of Physics 3, 247.Discrete Models. Addison-Wesley.Google Scholar
  11. Heisenberg, W. (1938).Zeitschrift für Physik 110, 251; (1943).120, 513.Google Scholar
  12. Hellend, E. and Tanaka, K. (1954).Physical Review 94, 192.Google Scholar
  13. Holland, D. (1969).Journal of Mathematical Physics 10, 531.Google Scholar
  14. Hurwitz, L. P. and Piron, C. (1973).Relativistic Dynamics. University of Geneva preprint.Google Scholar
  15. Møller, C. (1952).The Theory of Relativity, p. 42. Oxford.Google Scholar
  16. Møller, C. (1952a).The Theory of Relativity, p. 155. Oxford.Google Scholar
  17. Møller, C. (1952b).The Theory of Relativity, p. 153. Oxford.Google Scholar
  18. Møller, C. (1952c).The Theory of Relativity, p. 139. Oxford.Google Scholar
  19. Møller, C. (1952d).The Theory of Relativity, p. 373. Oxford.Google Scholar
  20. Murnaghan, F. D. (1962).The Unitary and Rotation Group, p. 7. Spartan Books, Wigner, E. P. (1968).Group Theory and Its Applications, p. 119. (Ed. E. Loebl). Academic Press. Chacón, E. and Moshinsky, M. (1966).Physics Letters,23, 567. Maduemezia, A. (1971).Journal of Mathematical Physics,12, 1681.Google Scholar
  21. Naimark, M. A. (1964a).Linear Representation of the Lorentz Group, p. 122. Pergamon Press.Google Scholar
  22. Naimark, M. A. (1964b).Linear Representation of the Lorentz Group, p. 93. Pergamon Press.Google Scholar
  23. Sierpiński, W. (1964a).Elementary Theory of Numbers, p. 52. Warsaw.Google Scholar
  24. Sierpiński, W. (1964b).Elementary Theory of Numbers, pp. 35–36. Warsaw.Google Scholar
  25. Sierpiński, W. (1964c).Elementary Theory of Numbers, p. 363. Warsaw. The numberm 2−1 is not of the form 4l(8κ+7), whenl≥0 andκ≥0 are integers.Google Scholar
  26. Snyder, H. (1947).Physical Review 71, 38;72, 68.Google Scholar
  27. Weyl, H. (1946).The Classical Groups. Weyl explicitly studied the properties of the exceptional proper orthogonal matrices (pp. 58–62), and of the exceptional unitary symplectic matrices (p. 172), and put the grounds to extend the same arguments to any semisimple groups, which leaves invariant a non-degenerate bilinear form (pp. 65–66).Google Scholar
  28. Wigner, E. P. (1959a).Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, p. 159. Academic Press. See also Gelfand, I. M., Minlos, R. A. and Shapiro, Z. Ya. (1963).Rotation and Lorentz Groups and their Applications, p. 13. Pergamon Press.Google Scholar
  29. Wigner, E. P. (1959b).Group Theory and its Application to the Quantum Mechanics of Atomic Spectra, p. 160. Academic Press.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1974

Authors and Affiliations

  • Miguel Lorente
    • 1
  1. 1.Department of PhysicsBoston UniversityBoston

Personalised recommendations