Polynomial description of binary linear codes and related properties

  • J. Wolfmann


We introduce a description of everyk-dimensional binary linear code (without repetitions) by means of a polynomial overF2 k and the trace function ofF2 k overF2. Several properties of parameters, weights, automorphism group and related cyclic codes are deduced. Special cases and a connection with algebraic curves over finite fields are also investigated.


Coding theory Finite fields Polynomials over finite fields 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assmus Jr, E. F., Mattson Jr, H. F.: Coding and combinatorics. SIAM Review 16, 349–388 (1974)Google Scholar
  2. 2.
    Assmus Jr, E. F., Mattson Jr, H. F.: Perfect codes and the Mathieu groups. Archiv Math.17, 121–135 (1966)Google Scholar
  3. 3.
    Baumert, L. D., McEliece, R. J.: Weights of irreducible cyclic codes. Information Control20, 158–175 (1972)Google Scholar
  4. 4.
    Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Info. Theory21, 575–576 (1975)Google Scholar
  5. 5.
    Lachaud, G.: Exponential sums and the Carlitz-Uchiyama bound. Lecture Notes in Computer Science vol. 388, pp. 63–75. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  6. 6.
    Lachaud, G.: Majoration de quelques sommes exponentielles. Algebraic and combinatorial coding theory — 2, Leningrad Sept. 1990Google Scholar
  7. 7.
    Lachaud, G., Wolfmann, J.: Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique 2, C. R. Acad. Sci. Paris (I),305, 881–883 (1987)Google Scholar
  8. 8.
    Lachaud, G., Wolfman, J.: The weights of the orthogonals of the extended quadratic binary Goppa codes. IEEE Trans. Info. Theory36, 686–692 (1990)Google Scholar
  9. 9.
    Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of mathematics and its applications, vol. 20. Toronto: Addison-Wesley, Reading 1983Google Scholar
  10. 10.
    Mattson, H. F., Solomon, G.: A new treatment of Bose—Chaudhuri codes. J. Soc. Indust. Appl. Math.9, 654–669 (1961)Google Scholar
  11. 11.
    McEliece, R. J.: Irreducible cyclic codes and Gauss sums. In: “Combinatorics” Hall Jr, M., van Lint, J. H. (eds.), pp. 185–202. Dordrecht, Boston: Reidel 1975Google Scholar
  12. 12.
    McEliece, R. J.: Finite fields for computer scientists and engineers. : Kluwer 1986Google Scholar
  13. 13.
    MacWilliams, F. J., Seery, J.: The weight distribution of some minimal cyclic codes IEEE Trans. Info. Theory27, 796–806 (1981)Google Scholar
  14. 14.
    MacWilliams, F. J., Sloane, N. J. A.: The theory of error-correcting codes. Amsterdam: North-Holland 1977Google Scholar
  15. 15.
    Niederreiter, H.: Weights of cyclic codes. Information Control34, 130–140 (1977)Google Scholar
  16. 16.
    Remijn, J. C. C. M., Tiersma, H. J.: A duality theorem for the weight distribution of some cyclic codes. IEEE Trans. Info. Theory34, 1348–1351 (1988)Google Scholar
  17. 17.
    Wolfmann, J.: Codes projectifs à deux ou trois poids associés aux hyperquadriques d'une géometrie finie. Discrete Math.13, 185–211 (1975)Google Scholar
  18. 18.
    Wolfmann, J.: Codes projectifs à deux poids “caps” complets et ensembles de difference. J. Comb. TheoryA23, 208–222 (1977)Google Scholar
  19. 19.
    Wolfmann, J.: The weights of the dual code of the Melas code overGF(3). Discrete Math.74, 327–329 (1989)Google Scholar
  20. 20.
    Wolfmann, J.: New bounds on cyclic codes from algebraic curves. Lecture Notes in Computer Science, vol. 388, pp. 47–62. Berlin, Heidelberg, New York: Springer 1989Google Scholar
  21. 21.
    Wolfmann, J.: The number of points on certain algebraic curves over finite fields. Commun. Algebra17 (8), 2055–2060 (1989)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. Wolfmann
    • 1
  1. 1.G.E.C.T. Université de ToulonLa GardeFrance

Personalised recommendations