Was ferrocyanide a prebiotic reagent?

  • Anthony D. Keefe
  • Stanley L. Miller


Hydrogen cyanide is the starting material for a diverse array of prebiotic syntheses, including those of amino acids and purines. Hydrogen cyanide also reacts with ferrous ions to give ferrocyanide, and so it is possible that ferrocyanide was common in the early ocean. This can only be true if the hydrogen cyanide concentration was high enough and the rate of reaction of cyanide with ferrous ions was fast enough. We show experimentally that the rate of formation of ferrocyanide is rapid even at low concentrations of hydrogen cyanide in the pH range 6–8, and therefore an equilibrium calculation is valid. The equilibrium concentrations of ferrocyanide are calculated as a function of hydrogen cyanide concentration, pH and temperature. The steady state concentration of hydrogen cyanide depends on the rate of synthesis by electric discharges and ultraviolet light and the rate of hydrolysis, which depends on pH and temperature. Our conclusions show that ferrocyanide was a major species in the prebiotic ocean only at the highest production rates of hydrogen cyanide in a strongly reducing atmosphere and at temperatures of 0°C or less, although small amounts would have been present at lower hydrogen cyanide production rates. The prebiotic application of ferrocyanide as a source of hydrated electrons, as a photochemical replication process, and in semi-permeable membranes is discussed.

Key words

Ferrocyanide ferricyanide Prussian Blue blueprint hydrogen cyanide production rates prebiotic synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arrhenius, T., Arrhenius, G. and Paplawsky, W.: 1994,Orig. Life Evol. Biosphere 24, 1–17.Google Scholar
  2. Arrhenius, G., Gedulin, B. and Mojzsis, S.: 1993, in:Proceedings, Conference on Chemical Evolution and the Origin of Life, Trieste, Italy, 1992, Ponnamperuma, C. and Chela-Flores, J. (eds.), A. Deepak Publishing, Hampton, Virginia, 25–49.Google Scholar
  3. Asperger, S.: 1952,Trans. Faraday Soc. 48, 617–624.Google Scholar
  4. Beck, M. T.: 1987,Pure and App. Chem. 59, 1703–1720.Google Scholar
  5. Braterman, P. S., Arrhenius, G., Hui, S. and Paplawsky, W.: 1995,Orig. Life Evol. Biosphere 25, 531–538.Google Scholar
  6. Brown, J.: 1724,Phil. Trans. Roy. Soc. London 38, 17–24.Google Scholar
  7. Cairns-Smith, A. G.: 1982, Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, Cambridge, England.Google Scholar
  8. Chameides, W. L. and Walker, J. C. G.: 1981,Orig. Life Evol. Biosphere 11, 291–302.Google Scholar
  9. Clark, B. C.: 1988,Orig. Life Evol. Biosphere 18, 209–238.Google Scholar
  10. Cosgrove, J. G., Collins, R. L. and Murty, D. S.: 1973,J. Am. Chem. Soc. 95, 1083–1086.Google Scholar
  11. Deamer, D. W. and Harang, E.: 1990,Biosystems 24, 1–4.PubMedGoogle Scholar
  12. Findlay, A.: 1913, Osmotic Pressure, Longmans, Green and Co., London.Google Scholar
  13. Gmelin's Handbuch der Anorganischen Chemie: 1932,Eisen B, 670–723.Google Scholar
  14. Iwamoto, T.: 1984, in:Inclusion Compounds 1, Atwood, J. L., Davies, J. E. D. and MacNicol, D. D. (eds.), Academic Press, 29–57.Google Scholar
  15. Jordan, J. and Ewing, G. J.: 1962,Inorg. Chem. 1, 587–591.Google Scholar
  16. Kamaluddin, M. N. and Sharma A.: 1994,Orig. Life Evol. Biosphere 24, 469–477.Google Scholar
  17. Kamaluddin, M. N. and Sushama, D. S.: 1988,Orig. Life Evol. Biosphere 18, 267–280.Google Scholar
  18. Kielland, J.: 1937,J. Am. Chem. Soc. 59, 1675–1678.Google Scholar
  19. Kirk, R. E. and Othmer, D. E.: 1982,Kirk-Othmer Encyclopedia of Chemical Technology 20, John Wiley and Sons, New York, 3rd edition, 134–135.Google Scholar
  20. Kulesza, P. J. and Doblhofer, K.: 1989,J. Electroanal. Chem. 274, 95–105.Google Scholar
  21. Legros, J.: 1964,J. Chim. Phys. 61, 909–922.Google Scholar
  22. Miller, S. L. and Orgel, L. E.: 1974,The Origins of Life on The Earth, Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  23. Miller, S. L. and Smith-Magowan, D.: 1990,J. Phys. Chem. Ref. Data 19, 1049–1073.Google Scholar
  24. Orgel, L. E.: 1974, in:The Origin of Life and Evolutionary Biochemistry, Dose, K., Fox, S. W., Deborin, G. A. and Pavlovskaya, T. E. (eds.), Plenum Publishing Corporation, New York, (1974), pp. 369–371.Google Scholar
  25. Robin, M. B.: 1962,Inorg. Chem. 1, 337–342.Google Scholar
  26. Robinson, R. A. and Stokes, R. H.: 1959, Electrolyte Solutions, Butterworths, London.Google Scholar
  27. Samanta, T. and Basu, A. S.: 1989,Z. Phys. Chemie (Leipzig)270, 595–606.Google Scholar
  28. Saygin, Ö.: 1981,Naturwiss. 68, 617–619.Google Scholar
  29. Saygin, Ö.: 1983,Orig. Life Evol. Biosphere 13, 43–48.Google Scholar
  30. Schlesinger, G. and Miller, S. L.: 1973,J. Am. Chem. Soc. 95, 3729–3735.Google Scholar
  31. Sharpe, A. G.: 1976,The Chemistry of Cyano Complexes of the Transition Metals, Academic Press, London, 115–120.Google Scholar
  32. Shirom, M. and Stein, G.: 1971a,J. Chem. Phys. 55, 3372–3378.Google Scholar
  33. Shirom, M. and Stein, G.: 1971b,J. Chem. Phys. 55, 3379–3382.Google Scholar
  34. Stribling, R. and Miller, S. L.: 1987,Orig. Life Evol. Biosphere 17, 261–273.Google Scholar
  35. Tananaev, I. V., Glushkova, M. A. and Seifer, G. B.: 1956,Zhur. Neorg. Khim. 1, 66–68.Google Scholar
  36. Thyagarajan, B. S.: 1958,Chem. Rev. 58, 439–460.Google Scholar
  37. Tiwari, V. K.: 1983,Nat. Acad. Sci. Letters (India) 6, 159–161. 1984,Chem. Abstr. 100, 205196.Google Scholar
  38. Tiwari, V. K. and Sharma, R. K.: 1985Himalayan Chem. Pharm. Bull. 2, 32–33. 1986,Chem. Abstr. 105, 6782.Google Scholar
  39. Woodward, J.: 1724,Phil. Trans. Roy. Soc. London 38, 15–17.Google Scholar
  40. Zahnle, K. J.: 1986,J. Geophys. Res. 91, 2819–2834.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Anthony D. Keefe
    • 1
  • Stanley L. Miller
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations