Skip to main content
Log in

Experimental and clinical standards, and evolution of lasers in neurosurgery

  • Review Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

From initial experiments of ruby, argon and CO2 lasers on the nervous system so far, dramatic progress was made in delivery systems technology as well as in knowledge of laser-tissue interaction effects and hazards through various animal experiments and clinical experience. Most surgical effects of laser light on neural tissue and the central nervous system (CNS) are thermal lesions. Haemostasis, cutting and vaporization depend on laser emission parameters — wavelength, fluence and mode — and on the exposed tissues optical and thermal properties — water and haemoglobin content, thermal conductivity and specific heat. CO2 and Nd-YAG lasers have today a large place in the neurosurgical armamentarium, while new laser sources such as high power diode lasers will have one in the near future. Current applications of these lasers derive from their respective characteristics, and include CNS tumour and vascular malformation surgery, and stereotactic neurosurgery. Intracranial, spinal cord and intra-orbital meningiomas are the best lesions for laser use for haemostasis, dissection and tissue vaporization. Resection of acoustic neuromas, pituitary tumours, spinal cord neuromas, intracerebral gliomas and metastases may also benefit from lasers as accurate, haemostatic, non-contact instruments which reduce surgical trauma to the brain and eloquent structures such as brain stem and cranial nerves. Coagulative lasers (1.06 μm and 1.32 μm Nd-YAG, argon, or diode laser) will find an application for arteriovenous malformations and cavernomas. Any fiberoptic-guided laser will find a use during stereotactic neurosurgical procedures, including image-guided resection of tumours and vascular malformations and endoscopie tumour resection and cysts or entry into a ventricle. Besides these routine applications of lasers, laser interstitial thermotherapy (LITT) and photodynamic therapy (PDT) of brain tumours are still in the experimental stage.

The choice of a laser in a neurosurgical operating room implies an evaluation of the laser use (applications, frequency), of the available budget and costs-including purchase, maintenance and staff training-, and material that will be necessary: unit, peripherals, safety devices and measures, training programme.

Future applications of lasers in neurosurgery will come from technological advances and refined experimental applications. The availability of new wavelength, tunable, small sized and “smart” laser units, will enlarge the thermal and non-thermal interactions between laser energy and neural tissue leading to new surgical applications. Tissue photo-ablation, photohynamic therapy using second generation of photosensitizers, updated thermotherapy protocols, are current trends for further use of lasers in neurosurgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck OJ (1980) The use of the Nd-YAG and the CO2 laser in neurosurgery. Neurosurg Rev 3: 261–266

    PubMed  Google Scholar 

  2. Beck OJ (1984) Use of the Nd-YAG laser in neurosurgery. Neurosug Rev 5: 151–158

    Google Scholar 

  3. Beck OJ, Franck F, Schonberger JL (1987) Clinical evaluation of the 1.32 μm Nd-YAG laser in neurosurgery. Laser Med Surg 5: 110–113

    Google Scholar 

  4. Boulnois JL (1986) Photophysical processes in recent medical laser developments: a review. Lasers Med Sci 1: 47–66

    Google Scholar 

  5. Bown SG (1983) Phototherapy of tumors. World J Surg 7: 700–701

    PubMed  Google Scholar 

  6. Brown TE, True C, McLaurin RL, Hornby P, Rockwell RJ (1966) Laser radiation. Acute effects on cerebral cortex. Neurology 17: 789–796

    Google Scholar 

  7. Cozzens JW, Cerullo LJ (1985) Comparison of the effect of the carbon dioxide laser and the bipolar coagulator on the cat brain. Neurosurgery 16: 449–453

    PubMed  Google Scholar 

  8. Desgeorges M, Sterkers O, Ducolombier A, Pernot P, Hor F, Rosseau G, Yedeas M, Elabbadi N, Le Bars M (1992) La microchirurgie au laser des méningiomes. Neurochirurgie 38: 217–225

    PubMed  Google Scholar 

  9. Devaux B, Roux FX, Merienne L, Turak B, Belliard H, Leriche B, Cioloca C (1994) Prerequisites for the use of a high power diode laser in stereotactic neurosurgery. Acta Neurochir (Wien) 129 (3–4): 230

    Google Scholar 

  10. Devaux B, Lamarche M, Fallet-Bianco C, Olive L, Catalaa I, Roux FX (1996) Photolésions corticales multiples et foyer épileptogène à la pénicilline. Neurochirurgie (in press)

  11. Diamond I, Granelli SG, McDonagh AF, Nielsen S, Wilson CB, Jaenicke R (1972) Photodynamic therapy of malignant tumours. Lancet 2: 1175–1177

    PubMed  Google Scholar 

  12. Earle KM, Carpentier S, Roessmann U, Hayes JR, Zeitler E (1965) Central nervous system effect of laser radiation. Federation Proceedings 24: 129–142

    PubMed  Google Scholar 

  13. Edwards MS, Boggan JE, Fuller TA (1983) The laser in neurological surgery. J Neurosurg 59: 555–566

    PubMed  Google Scholar 

  14. Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossof R, Tribble J, Werkhaven J, O'Day D (1994) Tissue ablation by a free-electron laser tuned to the amine II band. Nature 371: 416–419

    PubMed  Google Scholar 

  15. Fasano VA, Lombard GF, Benech F, Tealdi S (1979) The CO2 laser in neurosurgery. In: Lasers in Biology and Medicine, Camaiore — Italy, August 19–31, pp 363–369

  16. Fassano VA (1982) The use of laser in neurosurgery. J Neurosurg Sci 26: 245–264

    PubMed  Google Scholar 

  17. Fox JL, Hayes JR, Stein MN, Green RC (1966) Effects of laser radiation on intracranial structures. Proc 3rd Int Congr Neurol Surg, Excerpta Medica Foundation, Amsterdam, pp 1–552

    Google Scholar 

  18. Frank F (1986) Biophysical basis and technical prerequisites for the endoscopie and surgical use of the neodymium-YAG laser. Laser Med Surg 3: 124–132

    Google Scholar 

  19. Gamache FW Jr, Morgello S (1993) The histopathological effects of the CO2 versus the KTP laser on the brain and spinal cord: a canine model. Neurosurgery 32: 100–104

    PubMed  Google Scholar 

  20. Hamilton D, McKean JD, Tulip J, Boisvert D, Cummins J (1986) In vitro photoradiation therapy of the rat 9L gliosarcoma. J Neurosurg 64: 775–776

    PubMed  Google Scholar 

  21. Hebeda KM, Menovsky T, Beek JF, Wolbers JG, van Gemert JF (1994) Light propagation in the brain depends on nerve fiber orientation. Neurosurgery 35: 720–724

    PubMed  Google Scholar 

  22. Heppner F, Asher PW (1977) First experience with laser beams in the treatment of neurosurgical diseases. Zentralbl Neurochir 38: 77–89

    PubMed  Google Scholar 

  23. Jain KK, Gorisch W (1979) Microvascular repair with Neodymium: YAG laser. Acta Neurochir (Wien) 28 [Suppl]: 260–262

    Google Scholar 

  24. Jain KK (1985) Complications of use of the neodymium: yttrium-aluminium-garnet laser in neurosurgery. Neurosurgery 16: 759–762

    PubMed  Google Scholar 

  25. Kelly PJ, Alker GJ Jr (1981) A stereotactic approach to deepseated CNS neoplasm using the carbon dioxide laser. Surg Neurol 15: 331–334

    PubMed  Google Scholar 

  26. Kelly PJ, Alker GJ Jr, Kall B, Goerss S (1983) Precision resection of intra-axial CNS lesions by CT-based stereotactic craniotomy and computer monitored CO2 laser. Acta Neurochir (Wien) 68: 1–9

    Google Scholar 

  27. Kelly PJ (1987) Computerized guidance for stereotactic treatment of brain tumours. Neurosurgery: state of the art review 2 (1): 165–191

    Google Scholar 

  28. Kelly PJ, Goerss S, Kall B (1988) Evolution of contemporary instrumentation for computer-assisted stereotactic surgery. Surg Neurol 30: 204–215

    PubMed  Google Scholar 

  29. Kozodoy RL, Zazanis GA, Schwarz KO, Harrington JA, McKinnon RD (1994) A hollow sapphire waveguide for stereotactic intraventricular CO2 laser neurosurgery: a rat model. Lasers Med Sci 9: 273–281

    Google Scholar 

  30. Laws ER, Cortese DA, Kinsey JH, Eagan RT, Anderson RE (1981) Photoradiation therapy in the treatment of malignant brain tumours. A Phase I (feasibility) study. Neurosurgery 9: 672–678

    PubMed  Google Scholar 

  31. Levy WJ, Nutkiewicz A, Ditmore QM, Watts C (1983) Laserinduced dorsal root entry zone lesions for pain control. J Neurosurg 59: 884–886

    PubMed  Google Scholar 

  32. Maira G, Mohr G, Manisset A, Hardy J (1979) Laser photocoagulation for treatment of experimental aneurysms. J Microsurg 1: 137–147

    Google Scholar 

  33. Martiniuk R, Bauer JA, McKean JD, Tulip J, Mielke B (1989) New long wavelength Nd: YAG laser at 1.44 μm: effect on brain. J Neurosurg 70: 249–256

    PubMed  Google Scholar 

  34. Matthewson K, Barton T, Lewin MR, O'Sullivan JP, Northfield TC, Brown SG (1988) Low power interstitial Nd-YAG laser photocoagulation in normal and neoplastic rat colon. Gut 29: 27–34

    PubMed  Google Scholar 

  35. Merienne L, Leriche B, Roux FX, Devaux B (1992) Utilisation du laser Nd-YAG en endoscopie intracranienne. Neurochirurgie 38: 245–247

    PubMed  Google Scholar 

  36. Mordon S, Roux FX, Mondragon S, Fallet-Bianco C, Sahafi F, Brunetaud JM (1990) A comparative study of coagulation effects on the cortex of the rat using Nd-YAG (1.32 um), Nd-YAG (1.06 μm) and CO2 lasers. Lasers Med Sci 5: 293–296

    Google Scholar 

  37. Müller G, Dörschel K, Kar H (1991) Biophysics of the photoablation process. Lasers Med Sci 6: 241–254

    Google Scholar 

  38. Muller PJ, Wilson BC (1990) Photo-dynamic therapy of malignant brain tumours. In: Trelles MA (ed) Laser tumour therapy. Ilustre Colegio Oficial de Medicos, Madrid, pp (5)75-(5)93

    Google Scholar 

  39. Patersson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue, 1. Models of radiation transport and their application. Lasers Med Sci 6: 155–168

    Google Scholar 

  40. Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue, 2. Optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6: 379–390

    Google Scholar 

  41. Powell MP, Torrens MJ, Thomson G, Horgan JG (1983) Isodense colloid cysts of the third ventricle. A diagnosis and therapeutic problem resolved by ventriculoscopy. Neurosurgery 13: 243–247

    Google Scholar 

  42. Powers SK, Edwards MS, Boggan JE, Pitts LH, Gutin PH, Hosobuchi Y, Adams JE, Wilson CB (1984) Use of the argon surgical laser in neurosurgery. J Neurosurg 60: 523–530

    PubMed  Google Scholar 

  43. Powers SK (1986) Fenestration of intraventricular cysts using a flexible, steerable endoscope and the argon laser. Neurosurgery 18: 637–641

    PubMed  Google Scholar 

  44. Rosomoff HL, Carroll F (1966) Reaction of neoplasm and brain to laser. Arch Neurol 14: 143–148

    PubMed  Google Scholar 

  45. Roux FX, Constans JP, Chodkiewicz JP (1985) Intra-cranial hemostasis with a neurosurgical CO2 laser unit. Acta Neurochir (Wien) 77: 37–40

    Google Scholar 

  46. Roux FX (1987) The use of CO2 laser in neurosurgical oncology. Lasers Med Surg 1: 60–63

    Google Scholar 

  47. Roux FX, Brasnu C, Sales J, Hamard H, Brasnu D (1989) Current use of CO2 laser during intra-orbital tumour removal. Lasers Med Surg 2: 95–99

    Google Scholar 

  48. Roux FX, Mordon S, Fallet-Bianco C, Merienne L, Devaux BC, Chodkiewicz JP (1990) Effects of 1.32 μm Nd-YAG laser on brain. Thermal and histological experimental data. Surg Neurol 34: 402–407

    PubMed  Google Scholar 

  49. Roux FX, Devaux BC, Mordon S, Nguyen S, Chodkiewicz JP (1990) The use of 1.32 Nd-YAG laser in neurosurgery: experimental data and clinical experience from 70 patients. J Clin Las Med Surg: 55–61

  50. Roux FX, Merienne L, Cioloca C, Devaux B, Chodkiewicz JP (1990) Neurosurgical lasers for tumour removal. Lasers Med Sci 5: 241–244

    Google Scholar 

  51. Roux FX, Devaux B, Merienne L, Cioloca C, Chodkiewicz JP (1990) 1.32 μm Nd-YAG laser during neurosurgical procedures experience with about 70 patients operated with the MC 2100 unit. Acta Neurochir (Wien) 107: 161–166

    Google Scholar 

  52. Roux FX, Merienne L, Leriche B, Lucerna S, Turak B, Devaux B, Chodkiewicz JP (1992) Laser interstitial thermotherapy in stereotactical neurosurgery. Lasers Med Sci 7: 121–126

    Google Scholar 

  53. Roux FX, Leriche B, Cioloca C, Devaux B, Turak B, Nohra G (1992) Le laser combiné (CO2+Nd-YAG 1,06 μm) en pratique neurochirurgicale. Première expérience à propos de 40 interventions intracrâniennes. Neurochirurgie 38: 235–237

    PubMed  Google Scholar 

  54. Roux FX (1993) State of the art: neurosurgical lasers for tumour removal through conventional and stereotactical procedures. Adv Clin Neurosci 3: 77–91

    Google Scholar 

  55. Roux FX (1995) L'avenir des lasers. In: Chavoin JPet al (eds) Encyclopédie des lasers en médecine et en chirurgie. Piccin, Padova, pp 461–494

  56. Salcman M, Samaras GM (1981) Hyperthermia for brain tumors: biophysical rationale. Neurosurgery 9: 327–335

    PubMed  Google Scholar 

  57. Schatz SW, Bown SG, Wyman DR, Groves JT, Wilson BC (1992) Low power interstitial Nd-YAG laser photocoagulation in normal rabbit brain. Lasers Med Sci 7: 433–439

    Google Scholar 

  58. Signorelli CD, Ammirati M, Tajana G (1978) Photochemotherapy of human glioma cells in culture by hematoporphyrin and visible light (preliminary experiment). Acta Neurol (Napoli) 33: 105–112

    Google Scholar 

  59. Stellar S (1965) Effects of laser energy on brain and nervous tissue. Laser Focus 1: 3

    Google Scholar 

  60. Stellar S (1970) Experimental studies with the carbon dioxide laser as a neurosurgical instrument. Med Biol Eng 8: 549–559

    PubMed  Google Scholar 

  61. Sterenborg HJ, Van Gemert MJ, Kamphorst W, Wolbers JG, Hogervorst W (1989) The spectral dépendance of the optical properties of the human brain. Lasers Med Sci 4: 221–227

    Google Scholar 

  62. Svaasand LO, Ellingsen R (1983) Optical properties of human brain. Photochem Photobiol 38: 293–299

    PubMed  Google Scholar 

  63. Svaasand LO, Gomer CJ, Morinelli E (1990) On the physical rationale of laser induced hyperthermia. Lasers Med Sci 5: 121–128

    Google Scholar 

  64. Takeuchi J, Handa H (1982) The Nd-Yag laser in neurological surgery. Surg Neurol 18: 140–142

    PubMed  Google Scholar 

  65. Takizawa T (1977) Comparison between the laser surgical unit and the electrosurgical unit. Neurol Med Chir 17: 95–105

    Google Scholar 

  66. Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol 53: 825–835

    PubMed  Google Scholar 

  67. Watson BD, Dietrich WD, Prado R, Ginsberg MD (1987) Argon laser-induced arterial photothrombosis. J Neurosurg 66: 748–754

    PubMed  Google Scholar 

  68. Wharen RE, Anderson RE, Scheithauer B, Sundt TM (1984) The Nd: YAG laser in neurosurgery. Part 1. Laboratory investigations: dose-related biological response of neural tissue. J Neurosurg 60: 531–539

    PubMed  Google Scholar 

  69. Wharen RE, Anderson RE, Sundt TM (1984) The Nd:YAG laser in neurosurgery. Part 2. Clinical studies: an adjunctive measure for hemostasis in resection of arteriovenous malformations. J Neurosurg 60: 540–547

    PubMed  Google Scholar 

  70. Winter A, Laing J, Paglione R, Sterzer F (1985) Microwave hyperthermia for brain tumors. Neurosurgery 17: 387–399

    PubMed  Google Scholar 

  71. Yahr WZ, Strully KJ (1966) Blood vessels anastomosis by laser and other biomedical applications. J Assoc Adv Med Instrum 1: 28–31

    Google Scholar 

  72. Zamorano L, Chavantes C, Jiang Z, Kadi AM (1995) Stereotactic neuroendoscopy. In: Cohen AR, Haines SJ (eds) Concepts in neurosurgery. Minimally invasive techniques in neurosurgery, Vol 7. William and Wilkins, Baltimore, pp 49–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devaux, B.C., Roux, F.X. Experimental and clinical standards, and evolution of lasers in neurosurgery. Acta neurochir 138, 1135–1147 (1996). https://doi.org/10.1007/BF01809742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01809742

Keywords

Navigation