pH profile of the adsorption of nucleotides onto montmorillonite

II. Adsorption and desorption of 5′-AMP in iron-calcium montmorillonite systems
  • A. Banin
  • J. G. Lawless
  • J. Mazzurco
  • F. M. Church
  • L. Margulies
  • J. B. Orenberg
Article

Abstract

The interaction of 5′-AMP with montmorillonite saturated with various ratios of two metals found ubiquitously on the surface of Earth, that is, iron and calcium, is investigated. Adsorption and desorption of the nucleotide were studied in the pH range of 2–12 at three levels of addition: 0.080, 0.268 and 0.803 mmole 5′-AMP per gram of clay. Two desorption stages were employed — H2O wash and NaOH extraction (pH=12.0). 5′-AMP was preferentially adsorbed on the Fe-containing clays relative to the Ca clay. The nucleotide was fully recovered by the two desorption stages, mostly by the NaOH extraction. The evidence at hand indicates that 5′-AMP reaction with clay is affected by electrostatic interactions involving both attraction and repulsion forces. Some specific adsorption, possibly the result of covalent bonding and complex formation with the adsorbed ion, cannot be ruled out for iron but does not appear to operate for calcium. Changes in pH cause varying degrees of attraction and repulsion of 5′-AMP and may have been operating on the primitive Earth, leading to sequences of adsorption and release of this biomolecule.

Keywords

Iron Calcium Clay Nucleotide Geochemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banin, A.: 1972, inFundamentals of Transport Phenomena in Porous Media, Develop. in Soil Sci. 2, Elsevier, N.Y., p. 212.Google Scholar
  2. Banin, A.: 1973,Quantitative Ion Exchange Process for Clays, U.S. Patent 3,725,528.Google Scholar
  3. Banin, A.: 1984, Unpublished data.Google Scholar
  4. De Haan, F. A. M.: 1964,J. Phys. Chem. 68, 2970.Google Scholar
  5. Gerstl, Z. and Banin, A.: 1980,Clays and Clay Minerals 28, 335.Google Scholar
  6. Graf, G. and Lagaly, G.: 1980,Clays and Clay Minerals 28, 12.Google Scholar
  7. Harter, R. D.: 1977, in Dixon, J. B., and Weed, S. B. (eds.),Minerals in Soil Environments, Soil Science Society of America, Publisher, Madison, Wis., p. 709.Google Scholar
  8. Hingston, F. J., Posner, A. M., and Quirk, J. P.: 1972,J. Soil Sci. 23, 177.Google Scholar
  9. Jackson, M. L.: 1964,Soil Chemical Analysis-Advanced Course. 2nd Ed., published by the author, Madison, Wis.Google Scholar
  10. Lawless, J. G. and Edelson, E. H.: 1980, in H. Holmquist (ed.),Life Science and Space Research, Vol. XVIII, Pergamon Press, Oxford, p. 83.Google Scholar
  11. Lawless, J. G., Banin, A., Church, F. M., Mazurco, J., Edelson, E. H., Huff, R., Kao, J., Cook, A., Lowe, T., and Orenberg, J. B.: 1985,Origins of Life, this issue.Google Scholar
  12. Rishpon, J., O'Hara, P. J., Lahav, N., and Lawless, J. G.: 1982,J. Mol. Evol. 18, 179.PubMedGoogle Scholar
  13. Schofield, R. K.: 1947,Nature 160, 408.Google Scholar
  14. Schofield, R. K. and Talibuddin, O.: 1948,Discuss. Faraday Soc. 3, 51.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • A. Banin
    • 1
    • 2
  • J. G. Lawless
    • 1
  • J. Mazzurco
    • 1
  • F. M. Church
    • 1
  • L. Margulies
    • 2
  • J. B. Orenberg
    • 3
  1. 1.Extraterrestrial Research DivisionNASA Ames Research CenterMoffett FieldUSA
  2. 2.Seagram Centre for Soil and Water SciencesHebrew University of JerusalemRehovotIsrael
  3. 3.Department of ChemistrySan Fransisco State UniversitySan FransiscoUSA

Personalised recommendations