Origins of life and evolution of the biosphere

, Volume 22, Issue 6, pp 361–368 | Cite as

Mixed anhydrides (phosphoric-carboxyl) are also formed in the esterification of 5′-amp with n-acetylaminoacyl imidazolides: Implications regarding the origin of protein synthesis

  • Nalinie S. M. D. Wickramasinghe
  • James C. LaceyJr.


Procedures for the formation of aminoacyl esters of monoribonucleotides with aminoacyl imidazolides were first reported by Gottikhet al. and summarized in 1970. This reaction has been widely used by us and numbers of other workers as a convenient means of preparing aminoacyl esters of nucleotides. We have previously reported that, under conditions of excess imidazolide, large amounts of bis 2′, 3′ esters are formed in addition to the monoesters, (Laceyet al., 1991). However, to our knowledge, no one has reported that in addition to the esters, relatively large amounts of the mixed anhydride, with the amino acid carboxyl attached to the phosphate, are also formed at short reaction times. We report here on the relative amounts of anhydride and esters formed in this reaction of racemic mixtures of eleven N-acetyl amino acid imidazolides with 5′-AMP and discuss the relevance of the findings to the origin of protein synthesis.


Phosphate Ester Nucleotide Reaction Time Organic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, P.: 1959,J. Am. Chem. Soc. 77, 3163–3165.Google Scholar
  2. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D.: 1990,Nature 347, 203–206.PubMedGoogle Scholar
  3. Garel, J. P., Filliol, D., and Mandel, P. J.: 1973,Chromat. 78, 381–385.Google Scholar
  4. Gottikh, B. P., Krayevsky, A. A., Tarussova, N. B., Purygin, P. P., and Tsilevich, T. L.: 1970,Tetrahedron 26, 4419–4433.PubMedGoogle Scholar
  5. Jencks, W. P.:Biochem. Biophys. Acta 24, 227–228.Google Scholar
  6. Lacey, J. C., Jr. and White, W. E.: 1972,Biochem. Biophys. Res. Comm. 47, 565–573.Google Scholar
  7. Lacey, J. C., Jr., Senaratne, N., and Mullins, D. W., Jr.: 1984,Orig. Life. 15, 45–54.Google Scholar
  8. Lacey, J. C., Jr., Hall, L. M., and Mullins, D. W., Jr.: 1985a,Orig. Life 16, 69–79.Google Scholar
  9. Lacey, J. C., Jr., Hall, L. M., Mullins, D. W., Jr., and Watkins, C. L.: 1985b,Orig. Life. 16, 130–150.Google Scholar
  10. Lacey, J. C., Jr., Mullins, D. W., Jr., and Watkins, C. L.: 1986,J. Biomol. Struct. and Dynam. 3, 783–793.Google Scholar
  11. Lacey, J. C., Jr., Hawkins, A., Thomas, R. D., and Watkins, C. L.: 1988,Proc. Natl. Acad. 85, 4996–5000.Google Scholar
  12. Lacey, J. C., Jr., Thomas, R. D., and Watkins, C. L.: 1990J. Mol. Evol. 31, 251–255.PubMedGoogle Scholar
  13. Lacey, J. C., Jr., Thomas, R. D., Staves, M. P., and Watkins, C. L.: 1991,Biochim. Biophys. Acta 1076, 395–400.PubMedGoogle Scholar
  14. Lacey, J. C., Jr., Wickramasinghe, N. S. M. D., and Sabatini, R. S.: 1992,Experentia 48, 379–383.Google Scholar
  15. Mullins, D. W., Jr. and Lacey, J. C., Jr.: 1986,J. Mol. Evol. 23, 76–79.PubMedGoogle Scholar
  16. Weber, A. L. and Lacey, J. C., Jr.: 1975,J. Mol. Evol. 6, 309–320.Google Scholar
  17. Wickramasinghe, N. S. M. D., Lacey, J. C., Jr.:Bioorganic Chemistry (in press).Google Scholar
  18. Wickramasinghe, N. S. M. D., Staves, M. P. and Lacey, J. C., Jr.: 1991,Biochem. 30, 2768–2772.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Nalinie S. M. D. Wickramasinghe
    • 1
  • James C. LaceyJr.
    • 1
  1. 1.Department of BiochemistryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations