Advertisement

Acta Neurochirurgica

, Volume 106, Issue 1–2, pp 18–23 | Cite as

Atrial natriuretic peptide-LI following subarachnoid haemorrhage in man

  • R. Juul
  • L. Edvinsson
  • R. Ekman
  • T. A. Frederiksen
  • G. Unsgård
  • S. E. Gisvold
Clinical Research

Summary

Atrial natriuretic peptide -like immunoreactivity (ANP-LI) was measured in plasma from the external jugular vein (EJV) in the postoperative course of 11 patients with aneurysmal Subarachnoid haemorrhage. Samples were taken on day, 1, 2, 3, 5, 7 and 9 after operation and ANP-LI levels were determined using radioimmunoassay. Ten healthy volunteers were investigated with one EJV plasma sample.

Comparing the whole group of SAH patients with the control group, no significant differences in ANP-LI levels were found. In one patient very high ANP-LI levels were found together with high mean plasma sodium levels and high urine sodium excretion.

This suggests that there is no general correlation between plasma ANP-LI and SAH; in occasional patients such a correlation may be secondary to changes in plasma sodium levels.

Keywords

Atrial natriuretic peptide/factor ANP ANF plasma Subarachnoid haemorrhage SAH aneurysm sodium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barter FC, Schwartz WB (1967) The syndrome of inappropriate secretion of antidiuretic hormone. AM J Med 42: 790–806PubMedGoogle Scholar
  2. 2.
    Bradbury MWB (1979) The concept of a blood-brain barrier. John Wiley and Sons, ChichesterGoogle Scholar
  3. 3.
    Burnett JC, Granger JP, Opgenorth TJ (1984) Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 247: F 863-F 866Google Scholar
  4. 4.
    Cantiello HF, Ausiello DA (1986) Atrial natriuretic factor and cGMP inhibit amiloride-sensitive Na+ transport in the cultured renal epithelial cell line. LLC-PK. Biochem Biophys Res Commun 134: 852–860PubMedGoogle Scholar
  5. 5.
    Chyatte D, Sundt TM (1984) Cerebral vasospasm after subarachnoid hemorrhage. Mayo Clin Proc 59: 498–505PubMedGoogle Scholar
  6. 6.
    Cody RJ, Atlas SA, Laragh JH (1987) Physiologic and pharmacologic studies of atrial natriuretic factor: a natriuretic and vasoactive peptide. J Clin Pharmacol 27: 927–936PubMedGoogle Scholar
  7. 7.
    DiBona GF (1985) Neural regulation of renal tubular sodium resabsorption and renin release. Fed Proc 44: 2816–2822PubMedGoogle Scholar
  8. 8.
    DiBona GF (1977) Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol 233: F 73-F 81Google Scholar
  9. 9.
    Diringer M, Ladenseon PW, Stern BJ, Schleimer J, Hanley DF (1988) Plasma atrial natriuretic factor and subarachnoid haemorrhage. Stroke 19: 1119–1124PubMedGoogle Scholar
  10. 10.
    Doczi T, Bende J, Huska E, Kiss J (1981) Syndrome of inappropriate secretion of antidiuretic hormone after subarachnoid hemorrhage. Neurosurgery 9: 394–397PubMedGoogle Scholar
  11. 11.
    Doczi T, Joo F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor. Neurosurgery 4: 454–458Google Scholar
  12. 12.
    Doczi T, Joo F, Vecsernyes M, Bodosi M (1988) Increased concentration of atrial natriuretic factor in the cerebrospiinal fluid of patients with aneurysmal subarachnoid hemorrhage and raised intracranial pressure. Neurosurgery 1: 16–19Google Scholar
  13. 13.
    Fisher CM, Kistler JP, Davis JM (1980) Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6: 1–9PubMedGoogle Scholar
  14. 14.
    Fox JL, Falik JL, Shalhoub RJ (1971) Neurosurgical hyponatremia: the role of inappropriate antidiuresis. J Neurosurg 34: 506–514PubMedGoogle Scholar
  15. 15.
    Heros RC, Kistler JP (1983) Intracranial arterial aneurysm—an update. Stroke 14: 628–631PubMedGoogle Scholar
  16. 16.
    Heros RC, Zervas NT, Varsos V (1983) Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 14: 599–608PubMedGoogle Scholar
  17. 17.
    Hunt WE, Hess RM (1968) Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28: 14–20PubMedGoogle Scholar
  18. 18.
    Hunter WM, Greenwood FC (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194: 495–496PubMedGoogle Scholar
  19. 19.
    Jennet B, Bond M (1975) Assessment of outcome after severe brain damage. A practical scale. Lancet i: 480–484Google Scholar
  20. 20.
    Joynt RJ, Afifi A, Hardison J (1965) Hyponatremia in subarachnoid hemorrhage. Arch Neurol 13: 633–638PubMedGoogle Scholar
  21. 21.
    Lappe RW, Dinish JL, Bex F, Michalak K, Wendt R (1986) Effects of atrial natriuretic factor on drinking responses to central angiotensin, II. Pharmacol Biochem Behav 24: 1573–1576PubMedGoogle Scholar
  22. 22.
    Lang RE, Ruskoaho H, Toth M, Ganten D, Unger T, Dietz R (1987) Mechanisms controlling release of atrial natriuretic peptide. In: Mulrow PJ, Schrier R (eds) Atrial hormones and other natriuretic factors. American Physiological Society, Bethesda Md, pp 19–32Google Scholar
  23. 23.
    Lester M, Nelson PB (1981) Neurological aspects of vasopressin release and the syndrome of inappreporiate release of antidiuretic hormone. Neurosurgery 8: 735–740PubMedGoogle Scholar
  24. 24.
    Lynch DR, Braas KM, Snyder SH (1986) Atrial natriuretic factor receptors in rat kidney, adrenal gland, and brain: autoradiographic localization and fluid balance dependent changes. Proc Natl Acad Sci USA 83: 3557–3561Google Scholar
  25. 25.
    Marumo F, Masuda T, Masaky Y, Ando K (1988) The presence of atrial natriuretic peptide in canine cerebrospinal fluid and its possible origin in the brain. J Endocrinol 119: 127–131PubMedGoogle Scholar
  26. 26.
    Mohrmann M, Cantiello HF, Ausiello DA (1987) Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin. Am J Physiol: F 372–376Google Scholar
  27. 27.
    Needleman P, Greenwald JE (1986) Atriopeptin. A cardiac hormone intimately involved in fluid, electrolyte, and blood pressure homeostasis. N Engl J Med 314: 828–834PubMedGoogle Scholar
  28. 28.
    Nelson PB, Seif SM, Maroon JC, Robinson AG (1981) Hyponatremia in intracranial disease: perhaps not the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). J Neurosurg 55: 938–941PubMedGoogle Scholar
  29. 29.
    Nelson PB, Seif SM, Gutal J, Robinson AG (1984) Hyponatremia and natriuresis following subarachnoid hemorrhage in a monkey model. J Neurosurg 60: 233–237PubMedGoogle Scholar
  30. 30.
    Niwa M, Ibaragi M, Tsutsumi K, Kurihara M, Himeno A, Mori K, Ozaki M (1988) Specific atrial natriuretic peptide binding sites in rat cerebral capillaries. Neurosci Lett 91: 89–94PubMedGoogle Scholar
  31. 31.
    O'Donnell ME, Owen NE (1986) Role of cyclic GMP in atrial natriuretic factor stimulation of Na+,k+, Cl co-transport in vascular smooth muscle cells. J Biol Chem 261: 15461–15466PubMedGoogle Scholar
  32. 32.
    Pardridge WM, Frank HJ, Cornford EM, Braun LD, Crane PD, Oldendorf WH (1981) Neuropeptides and the blood-brain barrier. Adv Biochem Psychopharmacol 28: 321–328PubMedGoogle Scholar
  33. 33.
    Raichle ME (1981) Hypothesis: a central neuroendocrine system regulated brain ion homeostasis and volume. In: Martin JB, Reichlin S, Bick KL (eds) Neurosecretion and brain peptides. Raven Press, New York, pp 329–336Google Scholar
  34. 34.
    Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally released vasopressin. Brain Res 143: 191–194PubMedGoogle Scholar
  35. 35.
    Robertson GL (1977) The regulation of vasopressin function in health and disease. Recent Prog Horm Res 33: 333–374Google Scholar
  36. 36.
    Rodriguez EM (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J Endocrinol 17: 407–443Google Scholar
  37. 37.
    Rosenfeld JV, Barnett GH, Sila CA, Little JR, Bravo EL, Beck GJ (1989) The effect of subarachnoid hemorrhage on blood and CSF atrial natriuretic factor. J Neurosurg 71: 32–37PubMedGoogle Scholar
  38. 38.
    Skofitsch G, Jakobowitz DM (1988) Atrial natriuretic peptide in the central nervous system of the rat. Cell Mol Neurobiol 8: 339–391PubMedGoogle Scholar
  39. 39.
    Standaert DG, Needleman P, Saper CB (1986) Organization of atriopeptin-like immunoreactive neurons in the central nervous system of the rat. J Comp Neurol 253: 315–341PubMedGoogle Scholar
  40. 40.
    Teasdale G, Jennet B (1974) Assessment of coma and impaired consciousness. A Practical Scale. Lancet ii: 81–84Google Scholar
  41. 41.
    Thibault G, Garcia R, Gutkowska J, Genest J, Cantin M (1986) Atrial natriuretic factor. A newly discovered hormone with significant clinical implications. Drugs 31: 369–375PubMedGoogle Scholar
  42. 42.
    Tsutsumi K, Niwa M, Himeno A, Kurihara M, Kawano T, Ibaragi M, Ozaki M, Mori K (1988) Alpha-Atrial natriuretic peptide binding sites in the rat choroid plexus are increased in the presence of hydrocephalus. Neurosci Lett 87: 93–98 (Elsevier Scientific Publishers, Ireland)Google Scholar
  43. 43.
    Weinand ME, O'Boynick PL, Goetz KL (1989) A study of serum antidiuretic hormone and atrial natriuretic peptide levels in a series of patients with intracranial disease and hyponatremia. Neurosurgery 25: 781–785PubMedGoogle Scholar
  44. 44.
    Wijdicks EFM, Vermeulen M, ten Haaf JA, Hijdra A, Bakker WH, van Gijn J (1985) Volume depletion and natriuresis in patients with a ruptured intracranial aneurysm. Ann Neurol 18: 211–216PubMedGoogle Scholar
  45. 45.
    Wijdicks EFM, Vermeulen M, Hijdra A, van Gijn J (1985) Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 17: 137–140PubMedGoogle Scholar
  46. 46.
    Wise BL (1978) Syndrome of inappropriate antidiuretic hormone secretion after spontaneous subarachnoid hemorrhage: a reversible cause of clinical deterioration. Neurosurgery 33: 412–414Google Scholar
  47. 47.
    Aaslid R, Markwalder TM, Nornes H (1982) Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57: 769–774PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • R. Juul
    • 1
  • L. Edvinsson
    • 4
  • R. Ekman
    • 2
  • T. A. Frederiksen
    • 1
  • G. Unsgård
    • 1
  • S. E. Gisvold
    • 3
  1. 1.Department of NeurosurgeryUniversity Hospital of TrondheimNorway
  2. 2.Department of NeurochemistryUniversity Hospital of LundSweden
  3. 3.Department of AnesthesiaUniversity Hospital of TrondheimNorway
  4. 4.Department of Internal MedicineUniversity Hospital of LundSweden

Personalised recommendations