Skip to main content
Log in

Peripheral nerve autografts to the injured spinal cord of the rat: An experimental model for the study of spinal cord regeneration

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Regenerated central axons have been shown experimentally to penetrate in peripheral nerve segments transplanted into the spinal cord (SC). However, if the nerves are transplanted between the stumps of the transected SC regeneration is impaired by local cavitation and scarring.

Our experiment was designed to study whether nerve grafts bridging a severe transverse SC lesion might provide to central regenerating axons a pathway to by-pass the lesion. To this purpose, 2 segments of autologous peripheral nerves were inserted through small dural openings into dorsal longitudinal myelotomies rostral and caudal to a transverse SC lesion in rats. Eighteen weeks after transplantation a large number of well myelinated fibres filled the grafted nerves. Only a few of these fibres, however, could be followed into the SC; they were located in the outer layers of the dorsal white matter. The problems regarding the origin and destination of these fibres are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguayo, A. J., Charron, L., Bray, G. M., Potential of Schwann cells from unmyelinated nerves to produce myelin—a quantitative ultrastructural and radioautographic study. J. Neurocytol.5 (1976), 565–573.

    PubMed  Google Scholar 

  2. Aguayo, A. J., Epps, J., Epps, J. Charron, L., Bray, G. M., Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res.104 (1976), 1–20.

    PubMed  Google Scholar 

  3. Aguayo, A. J., Bray, G. M., Perkins, C. S., Duncan, I. D., Axonsheath cell interactions in peripheral and central nervous system transplants. Soc. Neurosci. Symp.4 (1979), 361–383.

    Google Scholar 

  4. Aguayo, A. J., David, S., Garth, M. B., Influences of the glial environment on the elongate of axons after injury: transplantation studies in adult rodents. J. exp. Biol.95 (1981), 231–240.

    PubMed  Google Scholar 

  5. Bernstein, J. J., Bernstein, M. E., Axonal regeneration and formation of synapses proximal to the site of lesion following hemisection of the rat spinal cord. Exp. Neurol.30 (1971), 336–351.

    PubMed  Google Scholar 

  6. Berry, M., Riches, A. C., An immunological approach to regeneration in the central nervous system. Br. Med. Bull.30 (1974), 135–140.

    PubMed  Google Scholar 

  7. Chi, N. H., Bignami, A., Bich, N. T., Dahl, D., Autologous sciatic nerve grafts to the rat spinal cord. Immunofluorescence studies with neurofilament and gliofilament (GFA) antiserum. Exp. Neurol.68 (1980), 568–580.

    PubMed  Google Scholar 

  8. David, S., Aguayo, A. J., Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science214 (1981), 931–933.

    PubMed  Google Scholar 

  9. Duncan, I. D., Aguayo, A. J., Bunge, R., Wood, P. M., Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J. Neurol. Sci.49 (1981), 241–252.

    PubMed  Google Scholar 

  10. Guth, L., Barrett, C. P., Donati, E. J., Deshpande, S. S., Albuquerque, E. X., Histopathological reactions and axonal regeneration in the transected spinal cord of hibernating squirrels. J. Comp. Neurol.203 (1981), 297–308.

    PubMed  Google Scholar 

  11. Horvat, J. C., Influence des cellules de Schwann greffees sur la regeneration des fibres nerveuses intraspinales lors de la transplantation de fragments de nerf peripherique, de muscle squelettique et de glande sous-maxillaire dans la moelle epiniere de la Souris. C. R. Acad. Sci. (Paris)290 (1980), 127–130.

    Google Scholar 

  12. Kao, C. C., Comparison of healing process in transected spinal cords grafted with autogenous brain tissue, sciatic nerve and nodose ganglion. Exp. Neurol.44 (1974), 424–439.

    PubMed  Google Scholar 

  13. Kao, C. C., Chang, L. W., Bloodworth, J. M. B., Axonal regeneration across transected mammalian spinal cords: an electron microscopic study of delayed microsurgical nerve grafting. Exp. Neurol.54 (1977), 591–615.

    PubMed  Google Scholar 

  14. Kao, C. C., Wrathall, J. R., Kyoshima, K., Rationales and goals of spinal cord reconstruction. In: Spinal Cord Reconstruction (Kao, C. C., et al., eds.), pp. 1–6. New York: Raven Press. 1983.

    Google Scholar 

  15. Kiernan, J. A., Hypotheses concerned with axonal regeneration in the mammalia nervous system. Biol. Rev.54 (1979), 155–197.

    PubMed  Google Scholar 

  16. Matthews, M. A., Onge, M. F., Faciane, C. L., Gelderd, J. B., Spinal cord transection: A quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of Piromen, Cytoxan or Trypsin. Neuropathol. Exp. Neurobiol.5 (1978), 161–180.

    Google Scholar 

  17. Ramon y Cajal, S., Degeneration and Regeneration of the Nervous System. R. M. May London: Oxford University Press. 1928.

    Google Scholar 

  18. Richardson, P. M., McGuinness, U. M., Aguayo, A. J., Axons from CNS neurons regenerate into PNS grafts. Nature284 (1980), 264–265.

    PubMed  Google Scholar 

  19. Richardson, P. M., McGuinness, U. M., Aguayo, A. J., Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods. Brain Res.237 (1982), 147–162.

    PubMed  Google Scholar 

  20. Rivlin, A. S., Tator, C. H., Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J. Neurosurg.47 (1977), 577–581.

    PubMed  Google Scholar 

  21. Simpson, S. A., Young, J. Z., Regeneration of fiber diameter after cross-unions of visceral and somatic nerves. J. Anat.79 (1945), 48–65.

    Google Scholar 

  22. Sugar, O., Gerard, R. W., Spinal cord regeneration in the rat. J. Neurophysiol.3 (1940), 1–19.

    Google Scholar 

  23. Weinberg, H. J., Spencer, P. S., Studies on the control of myelinogenesis. I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve. J. Neurocytol.4 (1975), 395–418.

    PubMed  Google Scholar 

  24. Weinberg, E. L., Raine, C. S., Reinnervation of peripheral nerve segments implanted into the rat central nervous system. Brain Res.198 (1980), 1–11.

    PubMed  Google Scholar 

  25. Weiss, P., Taylor, A. C., Guides for nerve regeneration across gaps. J. Neurosurg.3 (1946), 375–389.

    Google Scholar 

  26. Windle, W. F., Clemente, C. D., Chambers, W. W., Inhibition of formation of a glial barrier as a means of permitting a peripheral nerve to grow into the brain. J. Comp. Neurol.96 (1952), 359–370.

    PubMed  Google Scholar 

  27. Windle, W. F., Regeneration of axons in the vertebrate central nervous system. Physiol. Rev.36 (1956), 426–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, E., Pallini, R., Maira, G. et al. Peripheral nerve autografts to the injured spinal cord of the rat: An experimental model for the study of spinal cord regeneration. Acta neurochir 78, 57–64 (1985). https://doi.org/10.1007/BF01809242

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01809242

Keywords

Navigation