Acta Neurochirurgica

, Volume 25, Issue 3–4, pp 177–188 | Cite as

Changes of oxygen pressure, acid-base balance, metabolites and electrolytes in cerebrospinal fluid and blood after cerebral injury

  • E. Metzel
  • W. E. Zimmermann


In severe cerebral trauma oxygen pressure, acid-base balance, acid metabolites and electrolytes in C.S.F. are a sensitive gauge of celebral circulation.

The difference between pO2 levels in blood and C.S.F. can inform about the extent of damage of the brain.

The pH of C.S.F. and the difference between arterial blood and C.S.F. pCO2 levels provide information about changes in cerebral blood circulation. They seem to be related to pH in cerebral edema.

A most significant sign of reuced and insufficient cerebral circulation is an increase of lactate and a decrease of bicarbonate in C.S.F. Increase of lactate to more than 45 mg% is not compatible with recovery of cerebral function.


Oxygen Public Health Lactate Bicarbonate Cerebrospinal Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames III, A., K. Higashi, and F. B. Nesbett, Effect of PCO2, Acetarolomid and Quabain on Volume and Composition of Choroid-Plexus Fluid. J. Physiol.181 (1965), 516–524.PubMedGoogle Scholar
  2. Betz, E., pH-abhängige Regulationen der lokalen Gehirndurchblutung. In: Hydrodynamik, Elektrolyt- und Säure-Basen-Haushalt im Liquor und Nervensystem. E. Kienle (Ed.), 17–27. Stuttgart: Thieme. 1967.Google Scholar
  3. Bühlmann, A., W. Scheitlin und P. H. Rossier, Die Beziehungen zwischen Blut und Liquor cerebrospinalis bei Störungen des Säure-Basen-Gleichgewichtes. Schweiz. Med. Wschr.93 (1963), 427–432.PubMedGoogle Scholar
  4. Gordon, E., and M. Rossanda, The importance of the cerebrospinal fluid acid-base status in the treatment of patients with brain lesions. Acta anaesth. Scandinav.12 (1968), 51–73.Google Scholar
  5. — —, Artificial hyperventilation in the treatment of patients with severe brain lesion. In: Cerebral Blood Flow, M. Brock, D. H. Ingvar, N. A. Lassen and K. Schürmann (Eds.), p. 258. Berlin-Heidelberg-New York: Springer. 1969.Google Scholar
  6. Kienle, G., Methodische Hinweise bei der Bestimmung des Säure-Basen-Haushaltes im Liquor cerebrospinalis. Klin. Wschr.47 (1969), 545–549.PubMedGoogle Scholar
  7. Loeschke, H. H., H. P. Koepchen, und K. H. Gertz, Über den Einfluß von Wasserstoffionen-Konzentration und CO2-Druck im Liquor cerebrospinalis auf die Atmung. Pflügers Archiv ges. Physiol.266 (1958), 569–585.Google Scholar
  8. Mitchell, R. A., D. A. Herbert, and C. T. Carman, Acid-base constants and temperature coefficients for cerebrospinal fluid. A. Appl. Physiol.20 (1965), 27–30.Google Scholar
  9. Pappenheimer, J. P., Ion transport between blood cerebrospinal fluid and brain. In: Cerebrospinal fluid and the regulations of ventilation, 43–50. M. Brooks, F. F. Kao, B. B. Lloyd (Eds.). Oxford: Blackwell. 1965.Google Scholar
  10. Plum, F., and J. B. Posner, Blood and cerebrospinal fluid lactate during hyperventilation. Amer. J. Physiol.212 (1967), 864–870.PubMedGoogle Scholar
  11. — —, and W. W. Smith, Effect of hyperbaric-hyperoxic hyperventilation on blood, brain and CSF lactate. Amer. J. Physiol.215 (1968), 1240–1244.PubMedGoogle Scholar
  12. - - Inhomogeneity of cisternal and lumbar CSF acid-base balance during acute metabolic alterations. Scand. J. Clin. & Lab. Invest. 1968, Suppl.102, Sect. I: B.Google Scholar
  13. Posner, J. B., A. G. Swanson, and F. Plum, Acid-Base Balance in cerebrospinal fluid. Arch. Neurol.12 (1965), 479–496.PubMedGoogle Scholar
  14. —, and F. Plum, Independence of blood and cerebrospinal fluid lactate. Arch. Neurol.16 (1967), 492–496.PubMedGoogle Scholar
  15. - - CSF Acid-Base-Balance and Neurological Functions during Metabolic Acidosis and its treatment. Clin. Res. S. 20.Google Scholar
  16. Rossanda, M., G. Di Giugno, S. Corona, N. Bettinazzi, and G. Mangione, Oxygen supply to the brain and respirator treatment in severe somatose states. Acta anaesth. Scandinav. 1966, Suppl.23, 766–773.Google Scholar
  17. —, M. Mozza-Marrubini, and A. Beduschi, Clinical results of respirator treatment in unconscious patients with brain lesions. In: Cerebral Blood Flow. M. Brock, D. H. Ingvar, N. A. Lassen and K. Schürmann (Eds.), p. 260. Berlin-Heidelberg-New York: Springer. 1969.Google Scholar
  18. Rossier, P. H., und A. Bühlmann, Das Säure-Basen-Gleichgewicht des Liquor cerebrospinalis. In: Hydrodynamic, Elektrolyt- und Säure-Basen-Haushalt im Liquor und Nervensystem. E. Kienle (Ed.), p. 28–32. Stuttgart: Thieme. 1967.Google Scholar
  19. Schwab, M., Das Säure-Basen-Gleichgewicht im arteriellen Blut und Liquor cerebrospinalis bei chronischer Niereninsuffizienz. Klin. Wschr.40 (1962a), 765–772.PubMedGoogle Scholar
  20. —, Die scheinbare erste Dissotiationskonstante (pK'l) der Kohlensäure im Liquor cerebrospinalis. Klin. Wschr.40 (1962b), 182–184.PubMedGoogle Scholar
  21. Severinghaus, J. W., Electro-chemical gradients for hydrogen and bicarbonat ions across the blood—CSF—blood barrier in response to acid-base balance changes. In: Cerebrospinal fluid and the regulations of ventilation 247–258. M. Brooks, F. F. Kao, B. B. Lloyd (Eds.). Oxford: Blackwell. 1965.Google Scholar
  22. Siggaard-Andersen, O., and K. Engel, A new acid-base nomogram. Improved method for the calculation of the relevant blood acid-base data. Scand. J. clin. lab. invest.12 (1960), 177–186.PubMedGoogle Scholar
  23. —, Blood acid-base alignement nomogram, scales for pH, PCO2, base excess of whole blood of different hemoglobin concentrations, plasma bicarbonate and plasma total CO2. Scand. J. clin. lab. invest.15 (1963), 211–217.PubMedGoogle Scholar
  24. Tschirgi, R. D., Chemical environment of the central nervous system. In: Handbook of Physiology Section I, Vol. 3, 1865–1890. J. C. Field (Ed.). Washington: American Physiological Society. 1960.Google Scholar
  25. Van Heijst, A. N. P., B. F. Vissner, and A. H. J. Maas, A micro method for the determination of pH and PCO2 in human cerebrospinal fluid. Clin. Chem. Acta6 (1961), 589–590.Google Scholar
  26. —, A. H. J. Maas, and B. F. Vissner, Comparison of the acid-base balance in cisternal and lumbar cerebrospinal fluid. Pflügers Archiv287 (1966), 242.Google Scholar
  27. Zimmermann, W. E., Hypoxie und Gewebsstoffwechsel. Anaesthesist13/4 (1964), 122–127.Google Scholar
  28. —, Hypovolaemie, Excess-Laktat (Sauerstoffschuld) und Azidose in ihrer Auswirkung auf die Organdurchblutung; Beiträge zur Ersten Hilfe und Behandlung von Unfällen. Frankfurt/M.: Verlags- und Wirtschaftsgesellschaft der Elektrizitätswerke. 1966.Google Scholar
  29. —, Diagnostik der Hypoxie; in: „Hypoxie“, Anaesthesiologie und Wiederbelebung, Bd. 30, S. 78–90. Berlin-Heidelberg-New York: Springer. 1969.Google Scholar
  30. —, Acidosis in Severe Burns; in: Ann. N.Y. Acad. Sci.150 (1968), Art. 3, 584 bis 605.Google Scholar
  31. —, Funktionell-klinische Untersuchungen der Lunge im Schock. Langenbecks Arch.: Klin. Chir. (Kongreßbericht). Berlin-Heidelberg-New York: Springer. 1971.Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • E. Metzel
    • 1
  • W. E. Zimmermann
    • 1
  1. 1.Neurosurgical Clinic, Surgical Clinic and Institute of AnesthesiologyUniversity of Freiburg i. Br.Germany

Personalised recommendations