The origin of the polycyclic aromatic hydrocarbons in meteorites

Abstract

Polycyclic aromatic hydrocarbons (PAHs) in C1 and C2 Carbonaceous Chondrites appear to be the product of a high-temperature synthesis. This observation counters a prevailing view that PAHs in meteorites are a thermal alternation product of preexisting aliphatic compounds, which in turn required the presence of low-temperature mineral phases such as magnetite and hydrated phyllosilicates for their formation. Such a process would necessarily lead to a more low-temperature assemblage of PAHs, as many low-temperature minerals and compounds are extant in meteorites.

Ivuna, a C1 carbonaceous chondrite, has been shown to contain abundant amounts of the three-ring PAHs phenanthrene/anthracene, but no detectable levels of the two- and four-ring PAHs naphthalene and pyrene/fluoranthene. Ivuna and other C1 carbonaceous chondrites are known to have been extensively altered by water. The aqueous solubities of PAHs indicate that some PAHs would have been mobilized during the aqueous alteration phase in meteorite parent bodies. Model geochromatography experiments using crushed serpentine or beach sand as the solid phase and water for elution suggest that the complete separation of two, three, and four-ring PAHs could be expected to occur in the parent body of C1 carbonaceous chondrites. It is proposed that aqueous fluids driven by heat in the parent body of Ivuna migrated from the interior to the surface, in the process transporting, separating and concentrating PAHs at various zones in the parent body.

The presence of indigenous PAHs and absence of indigenous amino acids in the H4 ordinary chondrite Forest Vale provides support for the contention that different processes and environments contributed to the synthesis of the organic matter in the solar system.

References

  1. Allamandola, L. J., Sandford, S. A., and Wopenka, B.: 1987,Science 237 56.

    Google Scholar 

  2. Allamandola, L. J., Tielens, A. G. G. M., and Barker, J. R.: 1985,The Astrophysical Journal 290, L25.

    Google Scholar 

  3. Anders, E., Hayatsu, R., and Studier, M. H.: 1973,Science 182 781.

    Google Scholar 

  4. Bada, J. L., Cronin, J. R., Ho, M., Kvenvolden, K. A., Lawles, J. G., Miller, S. L., Oro, J., and Steinberg, S.: 1983,Nature 301 494.

    Google Scholar 

  5. Basile, B. P., Middleditch, B. S., and Oro, J.: 1984,Org. Geochem. 5, 211.

    Google Scholar 

  6. Blumer, M.: 1975,Chem. Geol. 16 245.

    Google Scholar 

  7. Blumer, M.: 1976,Sci. Amer. 234 (3), 34.

    Google Scholar 

  8. Clifton, C. G., Walters, C. C., and Simoneit, B. R. T.: 1990,Appl. Geochem. 5 169.

    Google Scholar 

  9. Cronin, J. R. and Pizzarello, S.: 1983,Adv Space Res. 3 5.

    PubMed  Google Scholar 

  10. Cronin, J. R. and Pizzarello, S.: 1990,Geochim. Cosmochim. Acta 54 2859.

    Google Scholar 

  11. Cronin, J. R., Pizzarello, S., and Cruikshank, D. P.: 1988, in J. F. Kerridge and M. S. Matthews (eds.),Meteorites and the Early Solar System, University of Arizona Press, p. 819.

  12. Donn, B. D., Allen, J. E., and Khanna, R. K.: 1989, in L. J. Allamandola and A. G. G. M. Tielens (eds.),Interstellar Dust, IAU Symposium 135, Kluwer Acad. Publ., Dordrecht, p. 181.

    Google Scholar 

  13. Friedmann, N., Bovee, H. H., and Miller, S. L.: 1971,J. Org. Chem. 36 2894.

    Google Scholar 

  14. Futoma, D. J., Smith, S. R., Smith, T. E., and Tanaka, J.: 1981,Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press.

  15. Hahn, J. H., Zenobi, R., Bada, J. L., and Zare, R. N.: 1988,Science 239 1523.

    Google Scholar 

  16. Hayatsu, R. and Anders, E.: 1981, inTopics in Current Chemistry 99, Springer-Verlag, p. 1.

  17. Hayatsu, R., Matsuoka, S., Scott, R. G., Studier, M. H., and Anders, E.: 1977,Geochim Cosmochim. Acta 41 1325.

    Google Scholar 

  18. Marti, K., Kim, J. S., Lavielle, B., Pellas, P., and Perron, C.: 1989,Z. Naturforsch 44a 963.

    Google Scholar 

  19. McSween, H. Y. Jr.: 1987,Meteorites and Their Parent Planets, Cambridge University Press.

  20. Miller, S. L.: 1953,Science 117 528.

    PubMed  Google Scholar 

  21. Miller, S. L.: 1987,Cold Spring Harb. Symp. Quant. Biol. LII, 17.

    Google Scholar 

  22. Miller, S. L. and Bada, J. L.: 1988,Nature 334 609.

    PubMed  Google Scholar 

  23. Mullie, F. and Reisse, J.: 1987, inTopics in Current Chemistry 139, Springer-Verlag. p. 83.

  24. Murae, T., Masuda, A., and Takahashi, T.: 1987, inMem. Natl. Inst. Polar Res., Special Issue 46 196.

    Google Scholar 

  25. Ogan, K., Katz, E., and Slavin, W.: 1979,Anal. Chem. 51 1315.

    Google Scholar 

  26. Peltzer, E. T., Bada, J. L., Schlesinger, G., and Miller, S. L.: 1984,Adv. Space Res. 4 (12), 69.

    PubMed  Google Scholar 

  27. Pering, K. L. and Ponnamperuma, C.: 1971,Science 173 237.

    Google Scholar 

  28. Schmidt, W.: 1987, in A. Leger, L. B. d'Hendecourt and N. Bocarra (eds.),Plycyclic Aromatic Hydrocarbons and Astrophysics, Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  29. Shimoyama, A. and Harada, K.: 1989,Geochem. J. 23 181.

    Google Scholar 

  30. Studier, M. H., Hayatsu, R., and Anders, E.: 1972,Geochim. Cosmochim. Acta 36 189.

    Google Scholar 

  31. Stull, D. R., Westrum, E. F. Jr., and Sinke, G. C.: 1969,The Chemical Thermodynamics of Organic Compounds, J. Wiley-Sons.

  32. Tissot, B. P. and Welte, D. H.: 1984,Petroleum Formation and Occurrence, 2nd ed. Springer-Verlag. p. 699.

  33. Urey, H.: 1953,XIII International Congress of Pure and Applied Chemistry: Plenary Lectures.

  34. Wing, M. R.: 1991, Ph. D. Dissertation, University of California, San Diego, p. 120.

    Google Scholar 

  35. Wing, M. R. and Bada, J. L.: 1991,Geochim. Cosmochim. Acta 55 2937.

    Google Scholar 

  36. Wolman, Y., Hverland, W. J., and Miller, S. L.: 1972,Proc. Nat. Acad. Sci. USA 69 809.

    Google Scholar 

  37. Wright, I. P. and Gilmour, I.: 1990,Nature 345 110.

    Google Scholar 

  38. Zenobi, R., Philippoz, J. -M., Zare, R. N., Wing, M. R., Bada, J. L., and Marti, K.: 1992,Geochim. Cosmochim. Acta (in press).

  39. Zhao, M. and Bada, J. L.: 1989,Nature 339 463.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wing, M.R., Bada, J.L. The origin of the polycyclic aromatic hydrocarbons in meteorites. Origins Life Evol Biosphere 21, 375–383 (1991). https://doi.org/10.1007/BF01808308

Download citation

Keywords

  • PAHs
  • Magnetite
  • Serpentine
  • Aqueous Fluid
  • Beach Sand