Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life

Abstract

Submarine hydrothermal vents are the only comtemporary geological environment which may be called truly primeval; they continue to be a major source of gases and dissolved elements to the modern ocean as they were to the Archean ocean. Then, as now, they encompassed a multiplicity of physical and chemical gradients as a direct result of interactions between extensive hydrothermal activity in the Earth's crust and the overlying oceanic and atmospheric environments. We have proposed that these gradients provided the necessary multiple pathways for the abiotic synthesis of chemical compounds, origin and evolution of ‘precells’ and ‘precell’ communities and, ultimately, the evolution of free-living organisms. This hypothesis is consistent with the tectonic, paleontological, and degassing history of the earth and with the use of thermal energy sources in the laboratory to synthesize amino acids and complex organic compounds. In this paper, we expand upon the geophysical, chemical, and possible microbiological analogies between contemporary and Archean hydrothermal systems and suggest several hypotheses, related to our model for the origin and evolution of life at Archean vents, which can be tested in present-day hydrothermal systems.

This is a preview of subscription content, log in to check access.

References

  1. Abbott, D. and Hoffman, S.: 1984,Tectonics 3, 429.

    Google Scholar 

  2. Awramik, S. M. and Barghoorn, E. S.: 1977,Precambrian Res. 5, 121.

    Google Scholar 

  3. Barghoorn, E. S. and Tyler, S. A.: 1965,Science 174, 563.

    Google Scholar 

  4. Baross, J. A. and Deming, J. W.: 1983,Nature 303, 423.

    Google Scholar 

  5. Baross, J. A. and Deming, J. W.: 1985, in M. Jones (ed.),The Hydrothermal Vents of the Eastern Pacific — An Overview, Bull. Biological Soc. Wash. (in press).

    Google Scholar 

  6. Baross, J. A., Deming, J. W., and Becker, R. R.: 1984, in M. J. Klug and C. A. Reddy (eds.),Current Perspectives in Microbial Ecology, American Society for Microbiology, Washington, D.C., p. 186.

    Google Scholar 

  7. Baross, J. A., Lilley, M. D., and Gordon, L. I.: 1982a,Nature 298, 366.

    Google Scholar 

  8. Baross, J. A., Dahm, C. N., Ward, A. K., Lilley, M. D., and Sedell, J. R.: 1982b,Nature 296, 49.

    Google Scholar 

  9. Berry, W. B. N. and Wilde, P.: 1983,Geology 11, 147.

    Google Scholar 

  10. Bickle, M. J.: 1978,Earth Planet. Sci. Lett. 40, 301.

    Google Scholar 

  11. Brock, T. D.: 1978,Thermophilic Microorganisms and Life at High Temperatures, Springer, New York, p. 465.

    Google Scholar 

  12. Caldwell, D. E. and Caldwell, S. J.: 1980,Geomicrobiol. J. 2, 39.

    Google Scholar 

  13. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B.: 1981,Science 213, 340.

    Google Scholar 

  14. Corliss, J. B., Baross, J. A., and Hoffman, S. E.: 1980,Oregon State University Oceanography Spec. Pub. 80-8.

  15. Corliss, J. B., Baross, J. A., and Hoffman, S. E.: 1981,Oceanologica Acta No. Sp., 59.

  16. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H.: 1979,Science 203, 1073.

    Google Scholar 

  17. Costa, U. R., Fyfe, W. S., Kerrich, R., and Nesbitt, M. W.: 1980,Chemical Geol. 30, 341.

    Google Scholar 

  18. Crick, F. H. C. and Orgel, L. E.: 1973,Icarus 19, 341.

    Google Scholar 

  19. Delaney, J. R., McDuff, R. E., and Lupton, J. E.: 1984,EOS 65, 051C-01.

    Google Scholar 

  20. Desbruyeres, D., Gaill, F., Laubier, L., Prieur, D., and Rau, G. H.: 1983,Marine Biol. 75, 201.

    Google Scholar 

  21. Edmond, J. M., Von Damm, K. L., McDuff, R. E., and Measures, C. I.: 1982,Nature 297, 187.

    Google Scholar 

  22. Francis, S., Margulis, L., and Barghoorn, E. S.: 1978a,Precamb, Res. 6, 65.

    Google Scholar 

  23. Francis, S., Barghoorn, E. S., and Margulis, L.: 1978b,Precamb. Res. 7, 387.

    Google Scholar 

  24. Fyfe, W. S.: 1980,Proceed. 3rd Colloquium on Planetary Water, State Univ. of New York, Buffalo, NASA, Washington, D. C., pp. 1–4.

    Google Scholar 

  25. Fyfe, W. S.: 1981,Science 213, 105.

    Google Scholar 

  26. Gold, T. J.: 1982, in P. McGeer and E. Durbin (eds.),Methane — Fuel for the Future, Plenum Press, New York, p. 45.

    Google Scholar 

  27. Gregory, R. J. and Taylor, H. P., Jr.: 1981,J. Geophys. Res. 86, 2737.

    Google Scholar 

  28. Haymon, R. M., Koski, R. A., and Sinclair, C.: 1984,Science 223, 1407.

    Google Scholar 

  29. Hekinian, R., Renard, V., and Cheminee, J. L.: 1984, in P. A. Rona, K. Bostrom, L. Laubier, and K. L. Smith, Jr. (eds.)Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, p. 571.

    Google Scholar 

  30. Hessler, R. R. and Smithey, W. M., Jr.: 1984, in P. A. Rona, K. Bostrom, L. Laubier, and K. L. Smith, Jr., (eds.),Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, p. 755.

    Google Scholar 

  31. Hoffman, S. E.: 1984,Workshop on the Early Earth: The Interval from Accretion to the Older Archean, Lunar and Planetary Institute, Houston, 31.

    Google Scholar 

  32. Hoffman, S. E. and Baross, J. A.: 1984,Workshop on the Early Earth: the Interval from Accretion to the Older Archean, Lunar and Planetary Institute, Houston, 34.

    Google Scholar 

  33. Hoyle, F. and Wickramasinghe, N. C.: 1979,Lifecloud, Sphere Books, Ltd., London, 189 pp.

    Google Scholar 

  34. Jannasch, H. W.: 1984, in P. A. Rona, K. Bostrom, L. Laubier, and K. L. Smith, Jr.,Hydrothermal Processes at Seafloor Spreading Centers (eds.), Plenum Press, New York, p. 677.

    Google Scholar 

  35. Jannasch, H. W. and Wirsen, C. O.: 1981,Appl. Environ. Microbiol. 41, 528.

    Google Scholar 

  36. Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R., and Wolfe, R. S.: 1983,Arch. Microbiol. 136, 254.

    Google Scholar 

  37. Karl, D. M., Burns, D. J., and Orrett, K.: 1983,Abstr. Ann. Meet. Am. Soc. Microbiol. N69, 235.

    Google Scholar 

  38. Karl, D. M., Wirsen, C. O., and Jannasch, H. W.: 1980,Science 207, 1345.

    Google Scholar 

  39. Knoll, A. H. and Barghoorn, E. S.: 1977,Science 198, 396.

    Google Scholar 

  40. Kushner, D. J. (ed.): 1978,Microbial Life in extreme Environments, Academic Press, London, 465 pp.

  41. Lilley, M. D., de Angelis, M. A., and Gordon, L. I.: 1982,Nature 300, 48.

    Google Scholar 

  42. Lilley, M. D., Baross, J. A., and Gordon, L. I.: 1984, in P. A. Rona, K. Bostrom, L. Laubier, and K. L. Smith, Jr. (eds.),Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, p. 411.

    Google Scholar 

  43. Lupton, J. E., Weiss, R. F., and Craig, H.: 1977,Nature 267, 603.

    Google Scholar 

  44. Margulis, L.: 1981,Symbiosis in Cell Evolution, W. H. Freeman and Co., San Francisco, 419 pp.

    Google Scholar 

  45. Margulis, L., Walker, J. C. G., and Rambler, M.: 1976,Nature 264, 620.

    Google Scholar 

  46. Oehler, J. H. and Schopf, J. W.: 1971,Science 174, 1229.

    Google Scholar 

  47. Oudin, E. and Constantinou, G.: 1984,Nature 308, 349.

    Google Scholar 

  48. Rona, P. A., Bostrom, K., Laubier, L. and Smith, K. L., Jr. (eds.): 1984,Hydrothermal Processes at Seafloor Spreading Centers, Plenum Press, New York, 796 pp.

  49. Schopf, J. W.: 1975,Ann. Rev. Earth & Planet. Sci. 3, 213.

    Google Scholar 

  50. Schopf, J. W. (ed.): 1983,Earth's Earliest Biosphere, Its Origin and Evolution, Princeton Univ. Press, New Jersey, 543 pp.

  51. Shanks, W. L., Bischoff, J. L., and Rosenbauer, R. J.: 1981,Geochim. Cosmochim. Acta 45, 1977.

    Google Scholar 

  52. Spiess, F. N., McDonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normack, W., Orcutt, J., and Rangin, C.: 1980,Science 207, 1421.

    Google Scholar 

  53. Stetter, K. O.: 1982,Nature 300, 258.

    Google Scholar 

  54. Styrt, M. M., Brackmann, A. J., Holland, H. D., Clark, B. C., Pisutha-Arnond, V., Eldridge, S. C., and Ohmoto, H.: 1981,Earth Planet. Sci. Lett. 53, 382.

    Google Scholar 

  55. Towe, K. M.: 1978,Nature 274, 657.

    Google Scholar 

  56. Towe, K. M.: 1983,Precambrian Res. 20, 161.

    Google Scholar 

  57. Walker, J. C. G.: 1983,Nature 302, 518.

    Google Scholar 

  58. Walter, M. R., Bauld, J., and Brock, T. D.: 1972,Science 178, 402.

    Google Scholar 

  59. Walter, M. R., Goode, A. D. T., and Hall, W. D. M.: 1976,Nature 261, 221.

    Google Scholar 

  60. Walter, M. R., Buick, R., and Dunlop, J. S. R.: 1980,Nature 284, 443.

    Google Scholar 

  61. Woese, C. R.: 1982,Zbl. Bakt. Myg., I. Abt. Orig. C3, 1.

    Google Scholar 

  62. Yun, Z.: 1984,Nature 309, 547.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baross, J.A., Hoffman, S.E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins Life Evol Biosphere 15, 327–345 (1985). https://doi.org/10.1007/BF01808177

Download citation

Keywords

  • Geochemistry
  • Thermal Energy
  • Gradient Environment
  • Hydrothermal System
  • Multiple Pathway