Advertisement

Origins of life and evolution of the biosphere

, Volume 15, Issue 4, pp 235–250 | Cite as

Habitability of the early earth: Clues from the physiology of nitrogen fixation and photosynthesis

  • Kenneth M. Towe
Planetary Atmospheres

Abstract

In the absence of direct evidence concerning the nature of the early Earth environments, it is acceptable under the uniformitarian principle to attempt to define primitive habitats from modern procaryotic physiology. Combining the rock and fossil record with present phylogenetic reconstuctions, application of this paleoecological approach to the evolutionary biochemistry and physiology of nitrogen fixation and photosynthesis leads to several inferences about the nature of Archean environments:
  1. 1.

    To stimulate nitrogenase evolution and avoid its repression, the activity of the NH 4 + ion was less than 10−3, and probably lower.

     
  2. 2.

    To be consistent with a moderately protective ozone screen, while not also repressing nitrogenase activity, incursions of abiotic dissolved oxygen at levels in the range 10−1.2−10−3.5 PAL would have been acceptable.

     
  3. 3.

    To induce the formation and activity of RuBP carboxylase, the pCO2 was less than 100 PAL.

     
  4. 4.

    To support Photosystem I activity, sulfide concentrations of at least 10−4 M were present in the photic zone.

     
  5. 5.

    To avoid a too-rapid oxidation of sulfide, the pH was probably between 6–7, where H2S exceeds HS.

     
Evolutionary ‘pressure’ to stimulate the later development of oxygenic photosynthesis (Photosystem II), would require several subsequent habitat modifications:
  1. 1.

    Lowering the sulfide to < 10−4 M to inhibit Photosystem I.

     
  2. 2.

    Raising the pH above neutral (HS > H2S), to mediate more rapid oxidation of HS.

     
  3. 3.

    Maintaining either an illumination below 300–400 lux (to avoid photosynthetic O2 self-repression of nitrogen fixation), or an adequate local source of combined nitrogen (aNH 4 + > 10−4) to repress nitrogen fixation entirely.

     

Keywords

Sulfide Ozone Dissolve Oxygen Photosynthesis Nitrogen Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bada, J. L. and Miller, S. A.: 1967,Science 159, 423–425.Google Scholar
  2. Barnabas, J., Schwartz, R. M., and Dayhoff, M. O.: 1982,Origins of Life 12, 81–91.PubMedGoogle Scholar
  3. Bergersen, F. J., Kennedy, C., and Hill, S.: 1982,Journal of General Microbiology 128, 909–915.PubMedGoogle Scholar
  4. Bergstein, T. and Cavari, B. Z.: 1983,Hydrobiologia 106, 241–246.Google Scholar
  5. Berkner, L. V. and Marshall, H. C.: 1965,Journal of Atmospheric Science 22, 225–261.Google Scholar
  6. Blake, A. J. and Carver, J. H.: 1977,Journal of Atmospheric Science 34, 720–728.Google Scholar
  7. Broda, E.: 1970Progress in Biophysics and Molecular Biology 21, 146.Google Scholar
  8. Broda, E.: 1975,Journal of Molecular Evolution 7, 87–100.PubMedGoogle Scholar
  9. Broda, E.: 1977,Origins of Life 8, 87–92.PubMedGoogle Scholar
  10. Broda, E. and Peschek, G. A.: 1983,Biosystems 16, 1–8.PubMedGoogle Scholar
  11. Calkins, J. and Thordardottir, T.: 1980,Nature 283, 563–566.Google Scholar
  12. Canuto, V. M., Levine, J. S., Augustsson, T. R., and Imhoff, C. L.: 1982,Nature 296, 816–820.Google Scholar
  13. Cooper, T. G., Filmer, D., Wishnick, M., and Lane, M.: 1969,Journal of Biological Chemistry 244, 1081–1083.PubMedGoogle Scholar
  14. Daesch, G. and Mortenson, L. E.: 1968,Journal of Bacteriology 96, 346–351.PubMedGoogle Scholar
  15. Drever, J. I.: 1974,Bulletin Geological Society of America 85, 1099–1106.Google Scholar
  16. Drozd, J. W., Tubb, R. S., and Postgate, J. R.: 1972,Journal of General Microbiology 73, 221–232.PubMedGoogle Scholar
  17. Egami, F.: 1974,Origins of Life 5, 405–413.PubMedGoogle Scholar
  18. Egami, F.: 1976,Journal of Molecular Evolution 8, 387–388.PubMedGoogle Scholar
  19. Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J. and Harrison, W. G.: 1977,Marine Biology 39, 111–120.Google Scholar
  20. Fogg, G. E.: 1974, in W. D. P. Stewart (ed.),Algal Physiology and Biochemistry, Blackwell, Oxford, pp. 560–582.Google Scholar
  21. Fogg, G. E.: 1982,Philosophical Transactions, Royal Society of London B296, 511–520.Google Scholar
  22. Garlick, S., Oren, A., and Padan, E.: 1977,Journal of Bacteriology 129, 623–629.PubMedGoogle Scholar
  23. Gaustad, J. E. and Vogel, S. N.: 1982,Origins of Life 12, 3–8.PubMedGoogle Scholar
  24. Hall, J. B.: 1973,Space Life Sciences 4, 204–213.PubMedGoogle Scholar
  25. Halliwell, B.: 1978,Cell Biology International Reports 2, 113–128.PubMedGoogle Scholar
  26. Hamadi, A. F. and Gallon, J. R.: 1981,Journal of General Microbiology 125, 391–398.Google Scholar
  27. Hart, M. A.: 1978,Icarus 33, 23–39.Google Scholar
  28. Hesstvedt, E., Henriksen, S. E., and Hjartarson, H.: 1974,Geophysica Norvegica 31, 1–8.Google Scholar
  29. Hill, S., Kennedy, C., Kavanaugh, E., Goldberg, R. B., and Hanau, R.: 1981,Nature 290, 424–426.PubMedGoogle Scholar
  30. Howsley, R. and Pearson, W. H.: 1979,FEMS Microbiology Letters 6, 287–292.Google Scholar
  31. Jerlov, N. G.: 1950,Nature 166, 111–112.PubMedGoogle Scholar
  32. Jordan, D. B. and Ogren, W. L.: 1981,Nature 291, 513–515.Google Scholar
  33. Jørgensen, B. B., Revsbech, N. P., Blackburn, T. H. and Cohen, Y.: 1979,Applied and Environmental Microbiology 38, 46–58.Google Scholar
  34. Kalininskaya, T. A., Pankratova, E. M., and Khokhlova, V. F.: 1981,Microbiology (translation ofMikrobiologiya)50, 401–406.Google Scholar
  35. Kasting, J. F., 1982,Journal of Geophysical Research 87, 3091–3098.Google Scholar
  36. Kasting, J. F. and Donahue, T. M.: 1980,Journal of Geophysical Research 85, 3255–3263.Google Scholar
  37. Klucas, R. V.: 1972,Canadian Journal of Microbiology 18, 1845–1850.PubMedGoogle Scholar
  38. Kobayashi, H. and Akazawa, T.: 1982,Archives of Biochemistry and Biophysics 214, 531–539.PubMedGoogle Scholar
  39. Koike, I., Redalje, D. G., Ammermann, J. W., and Holm-Hansen, O.: 1983,Marine Biology 74, 161–168.Google Scholar
  40. Kuhn, W. R. and Atreya, S. K.: 1979,Icarus 37, 207–213.Google Scholar
  41. Levine, J. S., Hays, P. B., and Walker, J. C. G.: 1979,Icarus 39, 295–309.Google Scholar
  42. Loesche, W. J.:Applied Microbiology 18, 723–727.Google Scholar
  43. Lowe, D. R.: 1980,Nature 284, 441–443.Google Scholar
  44. Lumsden, J. and Hall, D. O.: 1975,Nature 257, 670–671.PubMedGoogle Scholar
  45. Martinez, L., Silver, M. W., King, J. M., and Alldredge, A. L.: 1983,Science 221, 152–154.Google Scholar
  46. Oren, A. and Padan, E.: 1978,Journal of Bacteriology 133, 558–563.PubMedGoogle Scholar
  47. Oren, A., Padan, E., and Malkin, S.: 1979,Biochimica et Biophysica Acta 546, 270–279.PubMedGoogle Scholar
  48. Owen, T., Cess, R. D., and Ramanathan, V.: 1979,Nature 277, 640–641.Google Scholar
  49. Postgate, J. R.: 1982,Philosophical Transactions, Royal Society of London B296, 375–385.Google Scholar
  50. Rambler, M. B. and Margulis, L.: 1980,Science 210, 638–640.PubMedGoogle Scholar
  51. Ratner, M. I. and Walker, J. C. G.: 1972,Journal of Atmospheric Science 29, 803–808.Google Scholar
  52. Rolfe, R. D., Hentges, D. J., Campbell, B. J., and Barrett, J. T.: 1978,Applied and Environmental Microbiology 36, 306–313.Google Scholar
  53. Schopf, J. W.: 1978,Scientific American 239, 110–138.PubMedGoogle Scholar
  54. Schrauzer, G. N., Strampach, N., Hui, L. N., Palmer, M. R., and Salehi, J.: 1983:Proceedings of the National Academy of Sciences, USA 80, 3873–3876.Google Scholar
  55. Schwartz, R. M. and Dayhoff, M. O.: 1978,Science 199, 395–403.PubMedGoogle Scholar
  56. Smith, B. N.: 1976,BioSystems 8, 24–32.PubMedGoogle Scholar
  57. Stewart, W. D. P.: 1977,British Phycological Journal 12, 89–115.Google Scholar
  58. Stewart, W. D. P. and Pearson, H. W.: 1970,Proceedings Royal Society London B175, 293–311.Google Scholar
  59. Tally, F. P., Stewart, P. R., Sutter, V. L., and Rosenblatt, J. E.: 1975,Journal of Clinical Microbiology 1, 161–164.PubMedGoogle Scholar
  60. Towe, K. M.: 1978,Nature 274, 657–661.Google Scholar
  61. Towe, K. M.: 1981,Precambrian Research 16, 1–10.Google Scholar
  62. Walter, M. R., Buick, R., and Dunlop, J. S. R.: 1980,Nature 284, 443–445.Google Scholar
  63. Walker, J. C. G.: 1983,Nature 302, 518–520.Google Scholar
  64. Weller, D., Doemel, W., and Brock, T. D.: 1975,Archives of Microbiology 104, 7–13.PubMedGoogle Scholar
  65. Woese, C. R.: 1977,Journal of Molecular Evolution 9, 369–371.PubMedGoogle Scholar
  66. Wigley, T. M. L. and Brimblecombe, P.: 1981,Nature 291, 213–215.Google Scholar
  67. Yates, M. G.: 1977, In W. Newtonet al. (eds.),Recent Developments in Nitrogen Fixation, Academic Press, New York, pp. 219–270.Google Scholar
  68. Yung, Y. L. and McElroy, M. B.: 1979,Science 203, 1002–1004.Google Scholar
  69. Zohner, A. and Broda, E.: 1979,Origins of Life 9, 291–298.PubMedGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Kenneth M. Towe
    • 1
  1. 1.Department of PaleobiologySmithsonian InstitutionWashington, DCUSA

Personalised recommendations