Advertisement

International Journal of Theoretical Physics

, Volume 12, Issue 6, pp 401–405 | Cite as

Mach's principle in cosmology

  • E. Ihrig
Article

Abstract

In a certain class of cosmological models it is shown that every Ricci flat complete space-time must be locally flat.

Keywords

Field Theory Elementary Particle Quantum Field Theory Cosmological Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, S. (1971). The space-time with an anti-mach andV 4(π),Tensor,22, 261.Google Scholar
  2. Bochner, S. (1946). Vector fields and Ricci curvature,Bulletin of the American Mathematical Society,52, 776.Google Scholar
  3. Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie,Sitzungsberichte der Preussischen Akademie der Wissenschaften zu Berlin.Google Scholar
  4. Fisher, A. and Wolf, J. (1974). The Calabi construction for compact Ricci flat Riemannian manifolds,Bulletin of the American Mathematical Society,80, 92.Google Scholar
  5. Ihrig, E. and Sen, D. K. (1974). A class of singular spacetimes,General Relativity and Gravitation,5 (5), 593.Google Scholar
  6. Ihrig, E. and Sen, D. K. (1975). Analytic singularities and geodesic completeness II, to appear.Google Scholar
  7. Komar, A. (1966). Analytic continuation and global theorems in general relativity, article inPerspectives in Geometry and Relativity. Indiana University.Google Scholar
  8. Misner, C. (1963). The flatter regions of Newman, Unti, and Tamburino's generalized Schwarzchild space,Journal of Mathematical Physics,4, 924.Google Scholar
  9. Ozsvath, T. and Schuching E. (1962). Article inRecent Developments in General Relativity, p. 339. Pergamon.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • E. Ihrig
    • 1
  1. 1.Department of MathematicsUniversity of New BrunswickFrederictonCanada

Personalised recommendations