The γ-irradiation of aqueous solutions of urea. Implications for chemical evolution

  • R. Navarro-González
  • A. Negrón-Mendoza
  • E. Chacón


0.05 mole dm−3, O2-free aqueous solutions of urea were studies after receiving various doses of60Co gamma rays (0.14–600 kGy). Urea was found to be relatively stable under radiation; its radiation chemical yield of decomposition was 0.47. Hydrogen (G=0.50), carbon dioxide (G=0.44), ammonia (G=0.22), oxalic acid (G=0.0054), malonic acid (G=0.000064) and three unidentified oligomers were found to be the main radiolytic products. The origin of these products is explained by free radical reactions initiated by the transients from water radiolysis (H·,·OH,e aq ).


Radiation Ammonia Aqueous Solution Dioxide Urea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bamford, C. H. and Wayne, R. P.: 1967, in Ashmore, P. G., Dainton, F. S., and Sugden, T. M. (eds.),Photochemistry and Reaction Kinetics, Univ. Press, Cambridge, p. 26.Google Scholar
  2. Berger, R.: 1961,Proc. Nat. Acad. Sci. 47, 1434.Google Scholar
  3. Dodonova, N. and Siderova, A.L.: 1961,Biofizika 6, 149.PubMedGoogle Scholar
  4. Dose, K. and Risi, S.: 1968,Z. Naturforsch 23b, 581.Google Scholar
  5. Draganić, I. G. and Draganić, Z. D.: 1971,The Radiation Chemistry of Water, Acad. Press, New York, p. 242.Google Scholar
  6. Draganić, I. G. and Draganić, Z. D.: 1980,Radiat. Phys. Chem. 15, 195.Google Scholar
  7. Ferris, J. P., Edelson, E. H., Mount, N. M., and Sullivan, A. E.: 1979,J. Mol. Evol. 13, 317.PubMedGoogle Scholar
  8. Fox, S. W. and Dose, K.: 1977,Molecular Evolution and the Origin of Life, Marcel Dekker, Inc., New York, p. 114.Google Scholar
  9. Handschuh, G. J., Lohrmann, R., and Orgel, L. E.: 1973,J. Mol. Evol. 2, 251.PubMedGoogle Scholar
  10. Harada, K., Hasegawa, N., and Shimoyama, A.: 1984,Origins of Life 14, 115.Google Scholar
  11. Hart, E. J., Fielden, E. M., and Anbar, M.: 1967,J. Phys. Chem. 71, 3993.Google Scholar
  12. Hartig, K. J. and Getoff, N.: 1980,J. Photochem. 13, 207.Google Scholar
  13. Hulshof, J. and Ponnamperuma, C.: 1976,Origins of Life 7, 197.PubMedGoogle Scholar
  14. Kemp, I. A. and Kohnstam, G.: 1956,J. Chem. Soc., 900.Google Scholar
  15. Kraljić, I. and Trumbore, C. N.: 1965,J. Amer. Chem. Soc. 87, 2547.Google Scholar
  16. Lohrmann, R.: 1972,J. Mol. Evol. 1, 263.PubMedGoogle Scholar
  17. Lowe, C. U., Rees, M. W., and Markham, R.: 1963,Nature 199, 219.PubMedGoogle Scholar
  18. Masuda, T., Minemura, A., Yamauchi, K., and Kondo, M.: 1980,J. Radiat. Res. 21, 149.PubMedGoogle Scholar
  19. Miller, S. L.: 1955,J. Amer. Chem. Soc. 77, 2351.Google Scholar
  20. Miller, S. L.: 1959, in Oparin, A. I., Pasynkic, A. G., Braunshtein, A. E. and Pavlovskya, T. E. (eds.),The Origin of Life on Earth, Pergamon Press, New York, p. 123.Google Scholar
  21. Miller, S. L.: 1974, in Oró, J., Miller, S. L., Ponnamperuma, C. and Young, R. S. (eds.),Cosmochemical Evolution and the Origins of Life, I. D. Reidel Pub. Co., Holland, p. 139.Google Scholar
  22. Miller, S. L. and Parris, M.: 1964,Nature 204, 1248.Google Scholar
  23. Navarro-González, R. and Negrón-Mendoza, A.: 1983,Informe Técnico Q-05-83, CEN-UNAM. México.Google Scholar
  24. Navarro-González, R. and Negrón-Mendoza, A.: 1984,Informe Técnico Q-02-84, CEN-UNAM. México.Google Scholar
  25. Navarro-González, R., Negrón-Mendoza, A., Chacón, E., and Honda, Y.: 1989,J. Radiat. Phys. Chem. in press.Google Scholar
  26. Negrón-Mendoza, A., Draganić, Z. D., Navarro-González, R., and Draganić, I. G.: 1983,Rad. Res. 95, 248.Google Scholar
  27. Negrón-Mendoza, A., Navarro-González, R., and Torres, J. L.: 1986,Origins of Life 16, 305.Google Scholar
  28. Neta, P., Fessenden, R. W., and Schuler, R. H.: 1971,J. Phys. Chem. 75, 1654.Google Scholar
  29. Österberg, R., Orgel, L. E., and Lohrmann, R.: 1973,J. Mol. Evol. 2, 231.PubMedGoogle Scholar
  30. Palm, C. and Calvin, M.: 1962,J. Amer. Chem. Soc. 84, 2115.Google Scholar
  31. Renoult, D. H., McCallum, K. J., and Woods, R. J.: 1969,J. Radiat. Phys. Chem. 1, 495.Google Scholar
  32. Sanchez, R. A., Ferris, J. P., and Orgel, L. E.: 1966,Science 153, 72.PubMedGoogle Scholar
  33. Schlesinger, G. and Miller, S. L.: 1983,J. Mol. Evol. 19, 383.PubMedGoogle Scholar
  34. Steinman, G.: 1972,J. Mol. Evol. 1, 291.Google Scholar
  35. Strenli, C. A. and Averel, P. R. (eds.): 1969,Analytical Chemistry of Nitrogen and Its Compounds, Part I, Wiley Interscience, New York, p. 55.Google Scholar
  36. Tain-Jen, Y., Sutherland, R. G., and Verrall, R. E.: 1980,Can J. Chem. 58, 1909.Google Scholar
  37. Terasawa, J. and Harada, K.: 1980,Chem. Letters 73.Google Scholar
  38. Weissler, A.: 1953,J. Acoustical Soc. Amer. 25, 651.Google Scholar
  39. Werner, E. A.: 1923,The Chemistry of Urea, Logmans, Green and Co., London, p. 31.Google Scholar
  40. Wilson, I. R.: 1972, in Bamford, C. H. and Tipper, C. F. H. (eds.),Chemical Kinetics,Vol. 6, Elsevier Publ. Co., Amsterdam, p. 271.Google Scholar
  41. Wöhler, F.: 1828,Ann. Physik 12, 253.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • R. Navarro-González
    • 1
  • A. Negrón-Mendoza
    • 1
  • E. Chacón
    • 1
  1. 1.Instituto de Ciencias NuclearesU.N.A.M., Circuito Exterior, C.U.México D.F.México

Personalised recommendations