Role of transition metal ferrocyanides (II) in chemical evolution

  • Kamaluddin
  • Mala Nath
  • Sushama W. Deopujari
  • Archana Sharma
Article

Abstract

Due to ease of formation of cyanide under prebiotic conditions, cyanide ion might have formed stable complexes with transition metal ions on the primitive earth. In the course of chemical evolution insoluble metal cyano complexes, which settled at the bottom of primeval sea could have formed peptide and metal amino acid complexes through adsorption processes of amino acids onto these metal cyano complexes.

Adsorption of amino acids such as glycine, aspartic acid, and histidine on copper ferrocyanide and zinc ferrocyanide have been studied over a wide pH range of 3.6 – 8.5. Amino acids were adsorbed on the metal ferrocyanide complexes for different time periods. The progress of the adsorption was followed spectro-photometrically using ninhydrin reagent. Histidine was found to show maximum adsorption on both the adsorbents at neutral pH. Zinc ferrocyanide exhibits good sorption behaviour for all the three amino acids used in these investigations.

Keywords

Ninhydrin Ferrocyanide Chemical Evolution Ninhydrin Reagent Amino Acid Complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, M. T.: 1978 in Sigel, H. (ed.),Metal Ion in Biological Systems, Marcel Dekker, New York, Vol. 7, p. 1.Google Scholar
  2. Bernal, J. d.: 1951,The Physical Basis of Life, Routledge and Kegan Paul, p. 34.Google Scholar
  3. Bodenheimer, W. and Heller, L.: 1967,Clay Minerals 7, 167.Google Scholar
  4. Dolezal, J. and Kourim, V.: 1969,Radiochem, Radioanal. Lett. 1, 295.Google Scholar
  5. Egami, F.: 1974,J. Mol. Evol. 4, 113.PubMedGoogle Scholar
  6. Ferris, J. P. and Hagan Jr., W. J.: 1986,Origins Life 17, 69.Google Scholar
  7. Ferris, J. P., Huang, C. H., and Hagan Jr., W. J.: 1988,Origins Life Evol. Biosphere 18, 121.Google Scholar
  8. Hedges, J. I. and Hare, P. E.: 1987,Geochimica et Cosmochimica Acta 51, 255.Google Scholar
  9. Kourim, V., Rais, J., and Million, B.: 1964,Inorg. Nucl. Chem. 26, 1111.Google Scholar
  10. Kazakov, E. V. and Karpova, I. F.: 1965,Ser. Fiz. Khim. 20, 95.Google Scholar
  11. Lucchesi, P. J. and Glasson, W. A.: 1956,J. Am. Chem. Soc. 78, 1347.Google Scholar
  12. Lahav, N. and Chang, S.: 1976,J. Mol. Evol. 8, 357.PubMedGoogle Scholar
  13. Lahav, N. and Chang, S.: 1982,J. Mol. Evol. 19, 36.PubMedGoogle Scholar
  14. Lawless, J. G. and Levi, N.: 1970,J. Mol. Evol. 13, 281.Google Scholar
  15. Lawless, J. G. and Edelson, E. G.: 1980, inLife Sciences and Space Research, Pergamon Press, New York, Vol. III, p. 81.Google Scholar
  16. Miller, S. L. and Orgel, L. E.: 1974, inThe Origins of Life on Earth, Prentice Hall, Inc., Englewood Cliffs, N.J., p. 40, 83.Google Scholar
  17. Nakamoto, K., Fujita, J., and Murata, H.: 1958,J. Am. Chem. Soc. 80, 4817.Google Scholar
  18. Nakamoto, K.: 1963,Infra-red Spectra of Inorganic and Coordinate Compounds, John Wiley, New York, p. 166.Google Scholar
  19. Paecht Horowitz, M., Berger, J., Katchalsky, A.: 1970,Nature 228, 636.PubMedGoogle Scholar
  20. Ratnasamy, P. and Leonard, A. J.: 1976,J. Phys. Chem. 76, 1838.Google Scholar
  21. Rishpon, J., O'Hara, P. J., Lahav, N., and Lawless, J. G.: 1982,J. Mol. Evol. 18, 179.PubMedGoogle Scholar
  22. Szent Gyorgyi, A.: 1972, inThe Living State, Academic Press, p. 6.Google Scholar
  23. Takahashi, N.: 1978 in Nippon Seikagakukai (ed.),Seikagaku Jikken Koza, Tokyokagakudojin, Tokyo, Vol. 1 (11).Google Scholar
  24. Vogel: 1978 inVogel's Text Book of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis, Fourth Edition, p. No. 827.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Kamaluddin
    • 1
  • Mala Nath
    • 1
  • Sushama W. Deopujari
    • 1
  • Archana Sharma
    • 1
  1. 1.Department of ChemistryUniversity of RoorkeeRoorkeeIndia

Personalised recommendations