International Journal of Theoretical Physics

, Volume 14, Issue 5, pp 347–360 | Cite as

Group analysis of masses and spins in curved space-time: Cosmological and experimental consequences

  • S. Malin
Article
  • 26 Downloads

Abstract

Recent developments in spontaneously broken gauge theories as well as in group analysis of masses and spins in curved space-time indicate that rest masses may change as a function of cosmic time. Such as effect is incompatible with standard cosmological models. A set of cosmological models that incorporate mass variation is introduced. These cosmological models are shown to be fully compatible with the group analysis, yielding exactly the same formula; they are used therefore as a theoretical testing ground for the hypothesis of mass variation. The following consequences of this hypothesis are obtained: (1) Cosmological red-shifts are shown to correspond to a contracting, rather than expanding, universe. (2) The effects of mass variation on planetary orbits are calculated; they are not precluded by the data. Conclusive experimental evidence is expected within a few years.

Keywords

Field Theory Elementary Particle Gauge Theory Quantum Field Theory Experimental Evidence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abers, E. S., and Lee, B. W. (1973).Physics Reports 9C, 1.Google Scholar
  2. Branch, D., and Patchett, B. (1973).Monthly Notices of the Royal Astronomical Society 161, 71.Google Scholar
  3. Burbidge, G. (1971).Nature 233, 36.Google Scholar
  4. Coswik, R., and McLelland, J. (1973).Astrophysical Journal 180, 7.Google Scholar
  5. Dirac, P. A. M. (1935).Annals of Mathematics 36, 657.Google Scholar
  6. Dirac, P. A. M. (1937).Nature 139, 323.Google Scholar
  7. Dirac, P. A. M. (1938).Proceedings of the Royal Society, London A165, 199.Google Scholar
  8. Dreitlein, J. (1974).Physical Review Letters 33, 1243.Google Scholar
  9. Dyson, F. J. (1972). inAspects of Quantum Theory, in honor of P. A. M. Dirac's 70th Birthday, A. Salam and E. P. Wigner, eds. Cambridge University Press, Cambridge.Google Scholar
  10. Einstein, A. (1950).The Meaning of Relativity, 3rd edition, pp. 98–108. Princeton University Press, Princeton, New Jersey.Google Scholar
  11. Evans, M. T. (1967).Journal of Mathematical Physics 8, 170.Google Scholar
  12. Fronsdal, C. (1965).Reviews of Modern Physics 37, 221.Google Scholar
  13. Fronsdal, C. (1973). Report No. IC/73/7, International Center for Theoretical Physics, Miramare-Triask, Italy.Google Scholar
  14. Gasiorowicz, S. (1974),Quantum Physics, Chap. 17. John Wiley & Sons, New York.Google Scholar
  15. Georgi, H., and Glashaw, S. I. (1972).Physical Review D6, 2977.Google Scholar
  16. Gott, III, J. R., Gunn, J.-E., Schramm. D. N., and Tinsley, B. M. (1974).Astrophysical Journal 194, 543.Google Scholar
  17. Gürsey, F. (1965) inGroup Theoretical Concepts and Methods in Elementary Particle Physics F. Gürsey, ed. Gordon and Breach, New York.Google Scholar
  18. Halpern, M., and Malin, S. (1971).Journal of Mathematical Physics 12, 213.Google Scholar
  19. Halpern, M., and Malin, S. (1974). inStudies in Mathematical Physics A. O. Barut, ed. Reidel, North-Holland, Amsterdam.Google Scholar
  20. Inönu, E. (1965). inGroup Theoretical Concepts and Methods in Elementary Particle Physics F. Gürsey, ed. Gordon and Breach, New York.Google Scholar
  21. Inönu, E., and Wigner, E. P. (1953).Proceedings of the National Academy of Sciences of the United States of America 39, 510.Google Scholar
  22. Kirshner, R. P., and Kwan, J. (1974).Astrophysical Journal 193, 27.Google Scholar
  23. Kirzhnitz, D. A. (1972).Zhurnal Eksperimental'noi i Teoreticheskoi Fizika, Pis'ma v Redaktsiyu 15, 745 [JETP Letters, 15, 529].Google Scholar
  24. Kirzhnitz, D. A., and Linde, A. D. (1972).Physics Letters 42B, 471.Google Scholar
  25. Lindblom, L., and Nester, J. M. (1975),Physical Review D12, 626.Google Scholar
  26. Linde, A. D. (1974).Zhurnal Eksperimental'noi i Teoreticheskoi Fizika, Pisma v Redaktsiyu 19, 320 [JETP Letters, 19, 183].Google Scholar
  27. Mahanthappa, K. T. (1973). University of Texas at Austin report (unpublished).Google Scholar
  28. Malin, S. (1974).Physical Review D9, 3228.Google Scholar
  29. Malin, S. (1975).Physical Review D11, 707.Google Scholar
  30. McVittie, G. C. (1974).Quarterly Journal of the Royal Astronomical Society 15, 246.Google Scholar
  31. Newton, T. D. (1950).Annals of Mathematics 51, 730.Google Scholar
  32. Peach, J. V. (1970).Astrophysical Journal 159, 753.Google Scholar
  33. Philips, T. O., and Wigner, E. P. (1968). inGroup Theory and Its Applications E. M. Leobl, ed., Academic Press, New York.Google Scholar
  34. Rees, M. J. (1972).Monthly Notices of the Royal Astronomical Society 159, 11.Google Scholar
  35. Robertson, H. P., and Noonan, T. W. (1968).Relativity and Cosmology. Saunders, Philadelphia, London and Toronto.Google Scholar
  36. Salam, A. (1968). inElementary Particle Theory: Relativistic Groups and Analyticity (Nobel Symposium No. 8) by N. Svartholm, ed. Almquist and Wiksell, Stockholm.Google Scholar
  37. Sandage, A. (1972). Hale Observatories Report.Google Scholar
  38. Sandage, A. and Tammann (1974).Astrophysical Journal 194, 559.Google Scholar
  39. Schrödinger, E. (1939).Physica 6, 899.Google Scholar
  40. Segel, I. E. (1951).Duke Mathematical Journal 18, 221.Google Scholar
  41. Shapiro, I. I., Smith, W. B., Ash, M. B., Ingalls, R. P., and Pettengill, G. H. (1971).Physical Review Letters 26, 27.Google Scholar
  42. Shapiro, I. I. (1974). Talk given at the 5th Cambridge Conference on Relativity.Google Scholar
  43. Thomas, L. H. (1941).Annals of Mathematics 42, 113.Google Scholar
  44. Van Flandern, T.-C. (1975).Monthly Notices of the Royal Astronomy Society 170, 333.Google Scholar
  45. Veltman, M. (1974). University of Utrecht report (unpublished).Google Scholar
  46. Weinberg, S. (1967).Physical Review Letters 19, 1264.Google Scholar
  47. Weinberg, S. (1972a).Physical Review Letters 29, 388.Google Scholar
  48. Weinberg, S. (1972b).Gravitation and Cosmology, Chap. 14, John Wiley and Sons, New York.Google Scholar
  49. Weinberg, S. (1974).Physical Review D 9, 3557.Google Scholar
  50. Wigner, E. P. (1939).Annals of Mathematics 40, 149.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • S. Malin
    • 1
  1. 1.Department of Physics and AstronomyColgate UniversityHamilton

Personalised recommendations