International Journal of Theoretical Physics

, Volume 14, Issue 3, pp 183–192 | Cite as

Magnetic charge quantization and generalized imprimitivity systems

  • A. Z. Jadczyk


The quantum mechanical concept of an active translation operation in an external magnetic field is discussed, and an integral version of the kinetic momentum components' commutation relations in terms of a generalized imprimitivity system is formulated. Magnetic charge quantization then follows from a cocyclelike identity in complete analogy with Dirac's original derivation. A generalized system of imprimitivity for the Dirac monopole is explicitly constructed with no strings attached.


Magnetic Field Field Theory Elementary Particle Quantum Field Theory External Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bacry, H., Combe, P. H., and Richard, J. L. (1970).Nuovo Cimento 70A, 289.Google Scholar
  2. Bargmann, V. (1951).Annals of Mathematics 59, 1.Google Scholar
  3. Dirac, P. A. M. (1931).Proceedings of the Royal Society of London A133, 60.Google Scholar
  4. Ekstein, H. (1966). “Empirical Foundations of Nonrelativistic Quantum Mechanics,” p. 142, CNRS (Marseille) Preprint, No. 66.Google Scholar
  5. Ekstein, H. (1967).Physical Review 153, 153.Google Scholar
  6. Ekstein, H. (1969).Physical Review 184, 1315.Google Scholar
  7. Goldhaber, A. S. (1965).Physical Review 140, 1407.Google Scholar
  8. Halmos, A. (1957).Introduction to the Theory of Hilbert Space and Spectral Multiplicity Chelsea Publishing Co., New York.Google Scholar
  9. Hurst, C. A. (1968).Annals of Physics 50, 51.Google Scholar
  10. Jadczyk, A. Z. (1973).Bulletin de l'Académie Polonaise des Sciences, Série des Sciences, Mathematiques, Astronomiques et Physiques XXI, 581.Google Scholar
  11. Jadczyk, A. Z. and Jancewicz, B. (1973).Bulletin de l'académie Polonaise des Sciences, Série des Sciences, Mathematiques, Astronomique et Physiques XXI, 477.Google Scholar
  12. Lipkin, H. J., Weisberger, W. I., and Peshkin, M. (1969).Annals of Physics 53, 215.Google Scholar
  13. Mackey, G. W. (1968).Induced Representations of Groups and Quantum Mechanics W. A. Benjamin Inc., New York.Google Scholar
  14. Perese, A. (1968).Physical Review 167, 1449.Google Scholar
  15. Schwinger, (1971).Particles, Sources, and Fields, Addison-Wesley.Google Scholar
  16. Varadarajan, V. S. (1970).Geometry of Quantum Theory, Vol. II., Van Nostrand-Reinhold Co., New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. Z. Jadczyk
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocław, Cybulskiego 36Poland

Personalised recommendations