Skip to main content

Second-order scalar-tensor field equations in a four-dimensional space

Abstract

Lagrange scalar densities which are concomitants of a pseudo-Riemannian metric-tensor, a scalar field and their derivatives of arbitrary order are considered. The most general second-order Euler-Lagrange tensors derivable from such a Lagrangian in a four-dimensional space are constructed, and it is shown that these Euler-Lagrange tensors may be obtained from a Lagrangian which is at most of second order in the derivatives of the field functions.

This is a preview of subscription content, access via your institution.

References

  • Bergmann, P. G. (1968).International Journal of Theoretical Physics, Vol. 1, No. 1, p. 25.

    Google Scholar 

  • Brans, C. and Dicke, R. H. (1961).Physical Review,124, 925.

    Google Scholar 

  • du Plessis, J. C. (1969).Tensor,20, 347.

    Google Scholar 

  • Horndeski, G. W. (1971). ‘Mathematical Aspects of Scalar-Tensor Field Theories’, Section 2, M. Math. thesis (unpublished), University of Waterloo.

  • Horndeski, G. W. and Lovelock, D. (1972).Tensor,24, 79.

    Google Scholar 

  • Horndeski, G. W. (1973). ‘Invariant Variational Principles and Field Theories’, Part II, Ph.D. thesis (unpublished), University of Waterloo.

  • Lovelock, D. (1967).Atti della Accademia Nazionale dei Lincei (VIII),42, 187.

    Google Scholar 

  • Lovelock, D. (1969).Archives of Rational Mechanics and Analysis,33, 54.

    Google Scholar 

  • Lovelock, D. (1970a).Proceedings of the Cambridge Philosophical Society,68, 345.

    Google Scholar 

  • Lovelock, D. (1970b).Aequationes Mathematicae,4, 127.

    Google Scholar 

  • Lovelock, D. (1971).Journal of Mathematical Physics,12, 498.

    Google Scholar 

  • Lovelock, D. (1972).Journal of the Australian Mathematical Society,XIV (4), 482.

    Google Scholar 

  • Rund, H. (1964).2nd Colloquium on the Calculus of Variations, University of South Africa, 129.

  • Rund, H. (1966).Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg,29, 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10, 363–384 (1974). https://doi.org/10.1007/BF01807638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01807638

Keywords

  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Scalar Field
  • Field Equation