Skip to main content
Log in

Numerical prediction of combined laminar convection in isothermal vertical tubes via the method of lines

Numerische Berechnung von kombinierter laminarer Konvektion in isothermen senkrechten Rohren nach der Method of lines

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Simultaneous hydrodynamic and thermal development of a laminar flow due to superimposed natural and forced convection in an isothermal vertical pipe is investigated numerically. The distinct feature of the computational procedure is that it uses the method of lines, wherein the Navier-Stokes equations accounting for buoyancy and constant properties are reduced to a system of first order ordinary differential equations. The latter is readily solved by a standard fourth-order Runge-Kutta technique. The paper includes a detailed discussion of the proposed methodology, and in addition to this, it provides the distributions of velocities, pressure and temperature. All calculations are based on a coarse grid with ten lines uniformly distributed in the cross-stream direction of the pipe when the velocity profile at the entrance is assumed parabolic. Computed results accounting for both upflow and downflow situations are in good agreement with other more elaborate numerical investigations and also with available experimental data employing air and water as working fluids.

Zusammenfassung

Die simultane hydrodynamische und thermische Entwicklung einer laminaren Strömung infolge der Uberlagerung von freier und erzwungener Konvektion in einem isothermen senkrechten Rohr wird numerisch untersucht. Die besondere Eigenschaft der rechnerischen Prozedur ist, daß diese die Method of lines“ benutzt, worin die Navier-Stokes-Gleichungen für Antrieb bei konstanten Stoffwerten zu einem System einfacher Differentialgleichungen erster Ordnung reduziert werden. Das letztere ist ohne weiteres mit der Runge-Kutta-Technik 4. Ordnung zu lösen. Die Untersuchung beinhaltet eine detaillierte Diskussion der vorgeschlagenen Methodik und in Anfügung an diese liefert es die Verteilung von Geschwindigkeiten, Druck und Temperatur. Alle Kalkulationen basieren auf einem groben Gitter mit 10 Linien, die einheitlich in der Querstromrichtung des Rohres verteilt sind, wenn das Geschwindigkeitsprofil am Eingang des Rohres parabolisch angenommen wird. Die errechneten Ergebnisse, die sowohl für Aufwärts- als auch Abwärtsströmungen gelten, stimmen gut mit anderen aufwendigen Untersuchungen und ebenso mit verfügbaren experimentellen Daten, die Luft und Wasser als Arbeitsfluide gebrauchen, überein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

specific heat at constant pressure

f ap :

apparent friction coefficient, Eq. (23)

Gr :

Grashof number,(Tw−To) R3/v2

g :

acceleration of gravity

h :

convection coefficient

k :

thermal conductivity

l :

tube length

L:

parameter related to the sign of the buoyancy term, Eq. (3)

m :

mass flow rate

Nu :

local Nusselt number, 2hR/k

n :

number of lines

p :

pressure

P :

dimensionless pressure, (p-p o -ϱgx L)/ϱ U 2m

Pe :

Peclet number, 2U m R/α

Pr :

Prandtl number,μc p /k

Q T :

total heat transfer

r :

radial coordinate

R :

radius

Re :

Reynolds number,2U m R/v

rT :

temperature

u :

xial velocity

U :

dimensionless axial velocity,u/U m

v :

radial velocity

V :

dimensionless radial velocity,v/U m

x :

axial coordinate

Z:

dimensionless axial coordinate,x/R

α :

thermal diffusivity

β :

coefficient of thermal expansion, (l/ϱ)(∂)p

η :

dimensionless radial coordinate,r/R

θ :

dimensionless temperature, (T - Tw)/(To - Tw)

v :

kinematic viscosity

Ω :

dimensionless heat transfer, Eq. (25 a)

ϱ :

density

ψ :

generalized variables, Eq. (28)

b :

mean bulk

c :

center

i :

line

m:

mean

0:

entrance

w :

wall

References

  1. Martinelli, R. C.; Boelter, L. M. K.: An analytical prediction of superimposed free and forced viscous convection in a vertical pipe. Univ. Calif. Berkeley Publ. Eng. 24 (1942) 393–400

    Google Scholar 

  2. Martinelli, R. C.; Boelter, L. M. K.: Heat transfer and pressure drop for a fluid flowing in the viscous region through a vertical pipe. Trans. AIChE 38 (1942) 493–530

    Google Scholar 

  3. Pigford, R. L.: Nonisothermal flow and heat transfer inside vertical tubes. Chem. Eng. Progr. Symp. Ser. 51 (1955) 79–92

    Google Scholar 

  4. Rosen, E. M.; Hanratty, T. J.: Use of boundary-layer theory to predict the effect of heat transfer on the laminar flow field in a vertical tube with a constant temperature wall. AIChE J. 7 (1961) 112–123

    Google Scholar 

  5. Marner, W. J.: Combined free and forced laminar nonNewtonian convection in a vertical tube. Ph.D. Thesis Univ. of South Carolina 1969

  6. Marner, W. J.; McMillan, H. R.: Combined free and forced lamiar convection in a vertical tube with constant wall temperature. J. Heat Tranfer (1970) 559–562

  7. Zeldin, B.; Schmidt, F. W.: Developing flow with combined force-free convection in an isothermal vertical tube. J. Heat Transfer (1972) 211–223

  8. Collins, M. W.: Finite-difference analysis for developing laminar flow in circular tubes applied to forced and combined convection. Int. J. Num. Meth. Eng. 15 (1980) 381–404

    Google Scholar 

  9. Suzuki, K.; Kieda, S.; Chichiki, T.; Sato, T.: Numerical study of combined convective heat transfer with variable fluid properties in the inlet region of a circular pipe. Int. Conf. of Numerical Methods in Thermal Problems, Venice, Italy, 1981

  10. Shaddy, M. A.: Combined forced-free convection through vertical tubes at high Grashof numbers. Int. Heat Transfer Conference 3 (1986) 1433–1438, Munich, FRG

    Google Scholar 

  11. Liskovets, D. A.: The method of lines (review). Differential Equations 1 (1965) 1308–1323

    Google Scholar 

  12. Campo, A.; Lacoa, U.; Morales, J. C: Semi-analytical computation for laminar flow in the thermal entrance region of circular tubes. To appear in Int. J. Mech. Eng. Education 1987

  13. Campo, A.; Schuler, C: Thermal radiation and laminar forced convection in a gas pipe flow. Wärme-Stoffübertrag. 22 (1988) 251–257

    Google Scholar 

  14. Campo, A.: El metodo de las lineas aplicado al desarrollo termohidráulico en tubos isotérmicos. To appear in Revista Internacional de Métodos Numéricos en Ingenieria, 1988

  15. Marner, W. J.: Written discussion of Ref. [7]

  16. Shah, R. K.: Thermal entry length solutions to the circular tube and parallel plates. National Heat Transfer Conference, Bombay, India, 1975

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campo, A. Numerical prediction of combined laminar convection in isothermal vertical tubes via the method of lines. Wärme- und Stoffübertragung 23, 239–247 (1988). https://doi.org/10.1007/BF01807327

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01807327

Keywords

Navigation