Skip to main content

The Markov master equations and the Fermi golden rule


We give a proof that for a large class of systems weakly coupled to heat baths the transition probabilities per unit time obtained from the Markov approximation are equal to those that are calculated using the Fermi golden rule.

This is a preview of subscription content, access via your institution.


  • Alicki, R. (1976).Reports on Mathematical Physics,10, 249.

    Google Scholar 

  • Alicki, R. (1977).Reports on Mathematical Physics,11, 1.

    Google Scholar 

  • Davies, E. B. (1974).Communications in Mathematical Physics,39, 91.

    Google Scholar 

  • Davies, E. B. (1975).Annales de l'Institut Henri Poincaré,BXI, 265.

    Google Scholar 

  • Davies, E. B. (1976).Mathematische Annalen,219, 147.

    Google Scholar 

  • Davies, E. B., and Eckmann, J. P. (1975).Helvetica Physica Acta,48, 731.

    Google Scholar 

  • Fonda, L., Ghirardi, G. C., and Rimini, A. (1975).Nuovo Cimento,25A, 573.

    Google Scholar 

  • Isihara, A. (1971).Statistical Physics, Academic Press, New York, London.

    Google Scholar 

  • Messiah, A. (1962).Quantum Mechanics, Vol. II, North Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alicki, R. The Markov master equations and the Fermi golden rule. Int J Theor Phys 16, 351–355 (1977).

Download citation

  • Received:

  • Issue Date:

  • DOI:


  • Field Theory
  • Elementary Particle
  • Quantum Field Theory
  • Large Class
  • Master Equation