Structural parameters of semi-simple lie algebras

  • F. N. Ndili
  • G. C. Chukwumah
  • P. N. Okeke


Based on the exploitations of properties of the Killing forms of semi-simple Lie algebras, we set out in a readily programmable form, the structural analysis and the Iwasawa-type decompositions of semi-simple Lie algebras. As an example, the case ofSO(3,1) and its covering groupSL(2,C) is worked out in some detail.


Field Theory Elementary Particle Structural Analysis Quantum Field Theory Programmable Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behrends, R. E., Dreitlein, J., Fronsdal, C. and Lee, W. (1962).Review of Modern Physics 34, 1.Google Scholar
  2. Edmonds, A. R. (1957).Angular Momentum in Quantum Mechanics. Princeton University Press.Google Scholar
  3. Gelfand, I. M., Minlos, R. A. and Shapiro, Z. Ya. (1963).Representations of the Rotation and Lorentz Groups and their Applications. Pergamon Press, Oxford.Google Scholar
  4. Gourdin, M. (1967).Unitary Symmetry, Chapter XIII. North Holland, Amsterdam.Google Scholar
  5. Helgason, S. (1962).Differential Geometry and Symmetric Spaces. Academic Press, New York.Google Scholar
  6. Hermann, R. (1966).Lie Groups for Physicists. W. A. Benjamin, New York.Google Scholar
  7. Nagel, B. (1969).Lie Algebras, Lie Groups, Group Representations and Some Applications to Problems in Elementary Particle Physics. Seminar Notes, Department of Theoretical Physics, Royal Institute of Technology, Stockholm.Google Scholar
  8. Naimark, M. A. (1964).Linear Representations of the Lorentz Group, Chapter III. Pergamon Press, Oxford.Google Scholar
  9. Pontryagin, L. S. (1966).Topological Groups, 2nd Edn., Chaps. 10 and 11. Gordon and Breach Science Publishers, New York.Google Scholar
  10. Rowlatt, P. A. (1966).Group Theory and Elementary Particles. Longmans, London.Google Scholar
  11. Ruhl, W. (1970).The Lorentz Group and Harmonic Analysis. W. A. Benjamin, New York.Google Scholar
  12. Strom, S. (1971).Introduction to the Theory of Groups and Group Representations. Lecture Notes, CPT-120, Centre for Particle Theory, Austin, Texas.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • F. N. Ndili
    • 1
  • G. C. Chukwumah
    • 1
  • P. N. Okeke
    • 1
  1. 1.University of NigeriaNsukkaNigeria

Personalised recommendations