Breast Cancer Research and Treatment

, Volume 40, Issue 3, pp 209–223 | Cite as

Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model

  • Daniel F. Alonso
  • Eduardo F. Farías
  • Virginia Ladeda
  • Lilia Davel
  • Lydia Puricelli
  • Elisa Bal de Kier Joffé
Report

Abstract

Urokinase-type plasminogen activator (uPA) initiates an extracellular proteolytic cascade with which invasive cells eliminate barriers to movement. We have evaluated the antiinvasive and antimetastatic properties of two recently developed synthetic uPA inhibitors, B428 and B623, in a BALB/c mouse mammary carcinoma model. We used the F3II and M3 tumor cell lines, previously described by our laboratory.In vitro, noncytotoxic concentrations of B428 or B623 inhibited secreted and cell-associated uPA activity produced by tumor cells and blocked uPA-mediated whole tumor cell degradation of fibronectin, allowing deposition of extracellular fibronectin fibrils.In vivo, administration of compounds was not associated with overt toxic effects. Daily i.p. treatment with B428 (20 mg/kg/day) or B623 (7.5 mg/kg/day) for 2 weeks, beginning after tumor take, markedly blocked the invasion of the muscle and adipose layers of the subcutis and dermis in mice bearing highly invasive F3II tumors. However, these compounds neither inhibited tumor-induced angiogenesis nor reduced the incidence of spontaneous lung metastasis. Moreover, B623 enhanced the formation of experimental lung metastasis. Our results suggest that synthetic uPA inhibitors act as potent antiinvasiveness agentsin vivo but may be unable to control progression of the metastatic disease in the present mammary tumor model.

Key words

breast cancer fibronectin invasion mouse mammary tumor model protease inhibitors treatment urokinase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mullins DE, Rohrlich ST: The role of proteinases in cellular invasiveness. Biochim Biophys Acta 695: 177–214, 1983PubMedGoogle Scholar
  2. 2.
    Danø K, Andreasen PA, Grøndahl-Hansen J, Kristensen P, Nielsen LS, Skriver L: Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res 44: 139–266, 1985Google Scholar
  3. 3.
    Mignati P, Robbins E, Rifkin DB: Tumor invasion through the human amniotic membrane: requirement for a proteinase cascade. Cell 47: 487–498, 1986PubMedGoogle Scholar
  4. 4.
    Blasi F, Vassalli J-D, Danø K: Urokinase-type plasminogen activator: proenzyme, receptors and inhibitors. J Cell Biol 104: 801–804, 1987PubMedGoogle Scholar
  5. 5.
    Laiho M, Keski-Oja J: Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res 49: 2533–2553, 1989PubMedGoogle Scholar
  6. 6.
    Vassali J-D, Pepper MS: Membrane proteases in focus. Nature 370: 14–15, 1994PubMedGoogle Scholar
  7. 7.
    Møller LB: Structure and function of the urokinase receptor. Blood Coagul Fibrinol 4: 293–303, 1993Google Scholar
  8. 8.
    Ossowski L, Reich E: Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35: 611–619, 1983PubMedGoogle Scholar
  9. 9.
    Ossowski L: Plasminogen activator dependent pathway in the dissemination of human tumor cells in the chick embryo. Cell 52: 321–328, 1988PubMedGoogle Scholar
  10. 10.
    Ossowski L, Russo-Payne H, Wilson EL: Inhibition of urokinase-type plasminogen activator by antibodies: the effect on dissemination of a human tumor in the nude mouse. Cancer Res 51: 274–281, 1991PubMedGoogle Scholar
  11. 11.
    Pepper MS, Vassalli J-D, Montesano R, Orci L: Urokinasetype plasminogen activator is induced in migrating capillary endothelial cells. J Cell Biol 105: 2535–2541, 1987PubMedGoogle Scholar
  12. 12.
    Vassalli J-D, Bellin D: Amiloride selectively inhibits the urokinase-type plasminogen activator. FEBS Lett 214: 187–191, 1987PubMedGoogle Scholar
  13. 13.
    Towle MJ, Lee A, Maduakor EC, Schwartz EC, Bridges AJ, Littlefield BA: Inhibition of urokinase by 4-substituted benzo [b]thiophene-2-carboxamidines: an important new class of selective synthetic urokinase inhibitor. Cancer Res 53: 2553–2559, 1993PubMedGoogle Scholar
  14. 14.
    Alonso DF, Farías EF, Puricelli L, Bal de Kier Joffé E:In vitro andin vivo effects of potassium-sparing diuretics in a urokinase-producing murine mammary adenocarcinoma model. Proc Am Assoc Cancer Res 35: 68, 1994 (Abstract)Google Scholar
  15. 15.
    Bal de Kier Joffé E, Puricelli L, Sacerdote de Lustig E: Modified adhesion behavior afterin vitro passage of two related murine mammary adenocarcinomas with different metastatic ability. Invasion Metastasis 6: 302–312, 1986PubMedGoogle Scholar
  16. 16.
    Alonso DF, Farías EF, Bal de Kier Joffé E: Urokinase-type plasminogen activator activity released by clonal tumor cell populations isolated during the growth of a murine mammary adenocarcinoma. J Exp Clin Cancer Res 13: 211–216, 1994Google Scholar
  17. 17.
    Bal de Kier Joffé E, Puricelli L, Vidal MC, Sacerdote de Lustig E: Characterization of two murine mammary adenocarcinoma tumors with different metastatic ability. J Exp Clin Cancer Res 2: 151–160, 1983Google Scholar
  18. 18.
    Pereyra-Alfonso S, Solarz GR, Bal de Kier Joffé E: Urokinase-type plasminogen activator activity increases during the growth of two murine mammary adenocarcinomas with different metastasizing abilities. Clin Exp Metastasis 10: 395–401, 1992PubMedGoogle Scholar
  19. 19.
    Laemmli U: Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970PubMedGoogle Scholar
  20. 20.
    Alonso DF, Farías EF, Bal de Kier Joffé E: Impairment of fibrinolysis during the growth of two murine mammary adenocarcinomas. Cancer Lett 70: 181–187, 1993PubMedGoogle Scholar
  21. 21.
    Wun TC, Schleuning WD, Reich E: Isolation and characterization of urokinase from human plasma. J Biol Chem 257: 3276–3283, 1982PubMedGoogle Scholar
  22. 22.
    Saksela O: Radial caseinolysis in agarose: a simple method for detection of plasminogen activator in the presence of inhibitory substances and serum. Anal Biochem 111: 276–282, 1981PubMedGoogle Scholar
  23. 23.
    Jankum, J Maher VM, McCormick JJ: Malignant transformation of human fibroblast correlates with increased activity of receptor-bound plasminogen activator. Cancer Res 51: 1221–1226, 1991PubMedGoogle Scholar
  24. 24.
    Maidorn RP, Cragoe EJ Jr, Tannock IF: Therapeutic potential of analogues of amiloride: inhibition of the regulation of intracellular pH as a possible mechanism of tumour selective therapy. Br J Cancer 67: 297–303, 1993PubMedGoogle Scholar
  25. 25.
    Spahn H, Reuter K, Mutschler E, Gerok W, Knauf H: Pharmacokinetics of amiloride in renal and hepatic disease. Eur J Clin Pharmacol 33: 493–498, 1987PubMedGoogle Scholar
  26. 26.
    Sidky YA, Auerbach R: Lymphocyte-induced angiogenesis in tumor-bearing mice. Science 192: 1237–1238, 1976PubMedGoogle Scholar
  27. 27.
    Miguez M, Davel L, Sacerdote de Lustig E: Lymphocyteinduced angiogenesis: correlation with the metastatic incidence of two murine mammary adenocarcinomas. Invasion Metastasis 6: 313–320, 1986PubMedGoogle Scholar
  28. 28.
    Monte M, Davel L, Sacerdote de Lustig E: Inhibition of lymphocyte-induced angiogenesis by free radical scavengers. Free Radic Biol Med 17: 259–266, 1994PubMedGoogle Scholar
  29. 29.
    Pereyra-Alfonso S, Haedo A, Bal de Kier Joffé E: Correlation between urokinase-type plasminogen activator production and the metastasizing ability of two murine mammary adenocarcinomas. Int J Cancer 42: 59–63, 1988PubMedGoogle Scholar
  30. 30.
    Ossowski L:In vivo invasion of modified chorioallantoic membrane by tumor cells: the role of cell suface-bound urokinase. J Cell Biol 107: 2437–2445, 1988PubMedGoogle Scholar
  31. 31.
    Hoosein NM, Boyd DD, Hollas WJ, Mazar A, Henkin J, Chung LW: Involvement of urokinase and its receptor in the invasiveness of human prostatic carcinoma carcinoma cell lines. Cancer Commun 3: 255–264, 1991PubMedGoogle Scholar
  32. 32.
    Kobayashi H, Ohi H, Sugimura M, Shinohara H, Fujii T, Terao T: Inhibition ofin vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res 52: 3610–3614, 1992PubMedGoogle Scholar
  33. 33.
    Bruckner A, Filderman AE, Kirchheimer JC, Binder BR, Remold HG: Endogenous receptor-bound urokinase mediates tissue invasion of the lung carcinoma cell lines A549 and Calu-1. Cancer Res 52: 3043–3047, 1992PubMedGoogle Scholar
  34. 34.
    Quigley JP, Gold LI, Schwimmer R, Sullivan LM: Limited cleavage of cellular fibronectin by plasminogen activator purified from transformed cells. Proc Natl Acad Sci USA 84: 2776–2780, 1987PubMedGoogle Scholar
  35. 35.
    Gold LI, Rostagno A, Frangione B, Passalaris T: Localization of the cleavage sites on fibronectin following digestion by urokinase. J Cell Biochem 50: 441–452, 1992PubMedGoogle Scholar
  36. 36.
    Mangel WF: Better reception for urokinase. Nature 344: 488–489, 1990PubMedGoogle Scholar
  37. 37.
    Sato Y, Okamura K, Morimoto A, Hamanaka R, Hamaguchi K, Shimada T, Ono M, Kohno K, Sakata T, Kuwano M: Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cellsin vitro. Exp Cell Res 204: 223–229, 1993PubMedGoogle Scholar
  38. 38.
    Alonso DF, Bertolesi GE, Farías EF, Eiján AM, Bal de Kier Joffé E, Lauría de Cidre L: Antimetastatic effects associated with anticoagulant properties of heparin and chemically modified heparin species in a mouse mammary tumor model. Oncology Rep 3: 219–222, 1996Google Scholar
  39. 39.
    Olander JV, Bremer ME, Marasa JC, Feder J: Fibrin-enhanced endothelial cell organization. J Cell Physiol 125: 1–9, 1985PubMedGoogle Scholar
  40. 40.
    Dvorak HF, Harvey VS, Estrella P, Brown LF, McDonagh J, Dvorak AM: Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing. Lab Invest 57: 673–686, 1987PubMedGoogle Scholar
  41. 41.
    Constantini V, Zacharski LR: The role of fibrin in tumor metastasis. Cancer Metast Rev 11: 283–290, 1992Google Scholar
  42. 42.
    Ostrowski LE, Ahsan A, Suthar BP, Pagast P, Bain DL, Wong C, Patel A, Schultz RM: Selective inhibition of proteolytic enzymes in anin vivo mouse model for experimental metastasis. Cancer Res 46: 4121–4128, 1986PubMedGoogle Scholar
  43. 43.
    Kellen JA, Mirakian JA, Kolin A: Antimetastatic effect of amiloride in an animal tumor model. Anticancer Res 8: 1373–1376, 1988PubMedGoogle Scholar
  44. 44.
    Colombi M, Rebessi L, Boiocchi M, Barlati S: Relationship between circulating plasminogen activators and tumor development in mice. Cancer Res 46: 5748–5753, 1986PubMedGoogle Scholar
  45. 45.
    Gunji Y, Gorelik E: Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Res 48: 5216–5221, 1988PubMedGoogle Scholar
  46. 46.
    Esumi N, Fan D, Fidler IJ: Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res 51: 4549–4556, 1991PubMedGoogle Scholar
  47. 47.
    Hauert J, Nicoloso G, Schleuning W, Bachmann F, Schapira M: Plasminogen activator in dextran sulfate-activated euglobulin-fractions: a molecular analysis of factor XII- and prekallikrein-dependent fibrinolysis. Blood 4: 994–999, 1989Google Scholar
  48. 48.
    Kohn EC, Liotta LA: Molecular insights into cancer invasion: strategies for prevention and intervention. Cancer Res 55: 1856–1862, 1995PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Daniel F. Alonso
    • 1
  • Eduardo F. Farías
    • 1
  • Virginia Ladeda
    • 1
  • Lilia Davel
    • 1
  • Lydia Puricelli
    • 1
  • Elisa Bal de Kier Joffé
    • 1
  1. 1.Research Area, Institute of Oncology Angel H. RoffoUniversity of Buenos AiresBuenos AiresArgentina

Personalised recommendations