Skip to main content
Log in

Prognostic value of nuclear DNA content in breast cancer in relation to tumor size, nodal status, and estrogen receptor content

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The prognostic value of nuclear DNA distribution pattern in relation to tumor size, axillary lymph node status, and estrogen receptor (ER) content was studied in 464 patients with primary, operable mammary adenocarcinoma. The median follow-up time was 3 1/2 years. Slide cytophotometric DNA analysis was performed on morphologically identified Feulgen-stained tumor cells. The tumors were classified into four subgroups according to their DNA histogram type. DNA content was significantly related to tumor size and ER level but not to nodal status. When all variables were stimultaneously introduced into Cox's proportional hazards model, tumor size, nodal status, and DNA profile remained as significant predictors of recurrence. Restricting the analysis to node-negative patients, both DNA profile and tumor size showed a significant prognostic value. DNA did not contribute significant prognostic information in node-positive patients. However, the trends in recurrence-free survival were similar to those in the node-negative subgroup: patients with aneuploid tumors tended to fare worse than those with euploid carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tabar L, Gad A: Screening for breast cancer: The Swedish trial. Radiology 138: 219–222, 1981

    PubMed  Google Scholar 

  2. Fagerberg G, Baldetorp L, Gröntoft O, Lundström B, Månsson JC, Nordenskjöld B: Effects of repeated mammographic screening on breast cancer stage distribution. Acta Radiol Oncol 24: 465–473, 1985

    PubMed  Google Scholar 

  3. Frisell J, Glas U, Hellström L, Somell A: Randomized mammographic screening for breast cancer in Stockholm. Breast Cancer Res Treat 8: 45–54, 1986

    PubMed  Google Scholar 

  4. Fisher B: Laboratory and clinical research in breast cancer — a personal adventure: The David A. Karnofsky memorial lecture. Cancer Res 40: 3863–3874, 1980

    PubMed  Google Scholar 

  5. Atkin NB: Modal deoxyribonucleic acid and survival in carcinoma of the breast. Br Med J 1: 271–272, 1972

    PubMed  Google Scholar 

  6. Auer GU, Caspersson TO, Wallgren AS: DNA content and survival in mammary carcinoma. Anal Quant Cytol 2: 161–165, 1980

    PubMed  Google Scholar 

  7. Auer G, Eriksson E, Azavedo E, Caspersson T, Wallgren A: Prognostic significance of nuclear DNA content in mammary adenocarcinomas in humans. Cancer Res 44: 394–396, 1984

    PubMed  Google Scholar 

  8. Erhardt K, Auer G, Fallenius A, Folin A, Forsslund G, Silfverswärd C, Zetterberg A: Prognostic significance of nuclear DNA analysis in histological sections in mammary carcinoma. Am J Clin Oncol 9: 117–125, 1986

    PubMed  Google Scholar 

  9. Baildam AD, Zaloudik J, Howell A, Barnes DM, Turnbull L, Swindell R, Moore M, Sellwood RA: DNA analysis by flow cytometry: response to endocrine treatment and prognosis in advanced carcinoma of the breast. Br J Cancer 55: 553–559, 1987

    PubMed  Google Scholar 

  10. Coulson PB, Thornthwaite JT, Woolley TW, Sugarbaker EV, Seckinger D: Prognostic indicators including DNA histogram type, receptor content, and staging related to human breast cancer patient survival. Cancer Res 44: 4187–4196, 1984

    PubMed  Google Scholar 

  11. Stuart-Harris R, Hedley DW, Taylor IW, Levene AL, Smith IE: Tumour ploidy, response and survival in patients receiving endocrine therapy for advanced breast cancer. Br J Cancer 51: 573–576, 1985

    PubMed  Google Scholar 

  12. Klintenberg C, Stål O, Nordenskjöld B, Wallgren A, Arvidsson S, Skoog L: Proliferative index, cytosol estrogen receptor, and axillary node status as prognostic predictors in human mammary carcinoma. Breast Cancer Res Treat 7: 99–106, 1986

    Google Scholar 

  13. Klintenberg C, Wallgren A, Bjelkencrantz K, Carstensen J, Humla S, Nordenskjöld B, Skoog L: DNA distribution, cytosol estrogen receptors and axillary nodes as prognostic predictors in breast carcinoma. Acta Radiol Oncol 24: 253–258, 1985

    PubMed  Google Scholar 

  14. Hedley DW, Friedlander ML, Taylor IW: Application of DNA flow cytometry to paraffin-embedded archival material for the study of aneuploidy and its clinical significance. Cytometry 6: 327–333, 1985

    PubMed  Google Scholar 

  15. Fallenius AG, Franzén SA, Auer GU: Predictive value of nuclear DNA content in breast cancer in relation to clinical and morphologic factors. Cancer 62: 521–530, 1988

    PubMed  Google Scholar 

  16. Mattsson B, Rutqvist LE, Wallgren A: Undernotification of diagnosed cancer cases to the Stockholm Cancer Registry. Int J Epidemiol 14: 64–69, 1985

    PubMed  Google Scholar 

  17. Stockholm Breast Cancer Study Group: Breast cancer management program for women with breast cancer in the Stockholm-Gotland region (in Swedish). The Oncologic Centre, Karolinska Hospital, Stockholm, 1987

    Google Scholar 

  18. Rutqvist LE, Cedermark B, Glas U, Johansson H, Nordenskjöld B, Skoog L, Somell A, Theve NO, Friberg S, Askergren J: The Stockholm trial on adjuvant tamoxifen in early breast cancer. Correlation between estrogen receptor level and treatment effect. Breast Cancer Res Treat 10: 255–266, 1987

    PubMed  Google Scholar 

  19. Rutqvist LE, Cedermark B, Glas U, Johansson H, Rotstein S, Skoog L, Somell A, Theve NO, Askergren J, Friberg S, Bergström J, Blomstedt B, Räf L, Silfverswärd C, Einhorn J: Chemotherapy, radiotherapy and tamoxifen as adjuncts to surgery: a summary of three randomized trials. Int J Radiat Oncol Biol Phys (in press)

  20. Wrange Ö, Nordenskjöld B, Gustafsson J-Å: Cytosol estradiol receptor in human mammary carcinoma: An assay based on isoelectric focusing in polyacrylamide gel. Anal Biochem 85: 461–475, 1978

    PubMed  Google Scholar 

  21. Gaub J, Auer G, Zetterberg A: Quantitative cytochemical aspects of a combined Feulgen naphthol-yellow-S staining procedure for the simultaneous determination of nuclear and cytoplasmic proteins and DNA in mammalian cells. Exp Cell Res 92: 323–332, 1975

    PubMed  Google Scholar 

  22. Caspersson T, Kudynowski J: Cytochemical instrumentation for pathological work. Int Rev Exp Pathol 21: 1–54, 1980

    PubMed  Google Scholar 

  23. Fallenius AG, Askensten UG, Skoog LA, Auer GU: The reliability of microspectrophotometric and flow cytometric nuclear DNA measurements in adenocarcinomas of the breast. Cytometry 8: 260–266, 1987

    PubMed  Google Scholar 

  24. Cutler S, Ederer F: Maximum utilization of the life table method in analyzing survival. J Chron Dis 8: 699–710, 1958

    PubMed  Google Scholar 

  25. Cox DR: Regression models and life tables. J Roy Statist Soc (B) 34: 187–220, 1972

    Google Scholar 

  26. Armitage P: Statistical Methods in Medical Research. Blackwell, Oxford, 1971

    Google Scholar 

  27. Hedley DW, Rugg CA, Ng ABP, Taylor IW: Influence of cellular DNA content on disease-free survival of stage II breast cancer patients. Cancer Res 44: 5395–5398, 1984

    PubMed  Google Scholar 

  28. Owainati AAR, Robins RA, Hinton C, Ellis IO, Dowle CS, Ferry B, Elston CW, Blamey RW, Baldwin RW: Tumour aneuploidy, prognostic parameters and survival in primary breast cancer. Br J Cancer 55: 449–454, 1987

    PubMed  Google Scholar 

  29. Dowle CS, Owainati A, Robins A, Burns K, Ellis OI, Elston CW, Blamey RM: Prognostic significance of the DNA content of human breast cancer. Br J Surg 74: 133–136, 1987

    PubMed  Google Scholar 

  30. Harvey J, de Klerk N, Berryman I, Sterrett G, Byrne M, Papadimitriou J: Nuclear DNA content and prognosis in human breast cancer: A static cytophotometric study. Breast Cancer Res Treat 9: 101–109, 1987

    PubMed  Google Scholar 

  31. Kallioniemi O-P, Blanco G, Alavaikko M, Hietanen T, Mattila J, Lauslahti K, Koivula T: Tumour DNA ploidy as an independent prognostic factor in breast cancer. Br J Cancer 56: 637–642, 1987

    PubMed  Google Scholar 

  32. Hiddemann W, Schumann J, Andreeff U, Barlogie B, Herman CJ, Leif RC, Mayall BH, Murphy RF, Sandberg AA: Convention on nomenclature for DNA cytometry. Cytometry 5: 445–446, 1984

    Google Scholar 

  33. Olszewski W, Darzynkiewicz Z, Rosen PP, Schwartz MK, Melamed MR: Flow cytometry of breast carcinoma. Cancer 48: 980–988, 1981

    PubMed  Google Scholar 

  34. Thorud E, Fosså SD, Vaage S, Kaalhus O, Knudsen OS, Börmer O, Shoaib MC: Primary breast cancer: Flow cytometric DNA pattern in relation to clinical and histopathological characteristics. Cancer 57: 808–811, 1986

    PubMed  Google Scholar 

  35. Nesland JM, Pettersen EO, Fosså SD, Höie J, Johannessen JV: Nuclear DNA content in breast carcinomas with neuroendocrine differentiation. J Pathol 150: 181–185, 1986

    PubMed  Google Scholar 

  36. Masters JRW, Camplejohn RS, Millis RR, Rubens RD: Histological grade, elastosis, DNA ploidy and the response to chemotherapy of breast cancer. Br J Cancer 55: 455–457, 1987

    PubMed  Google Scholar 

  37. Kallioniemi O-P, Hietanen T, Mattila J, Lehtinen M, Lauslahti K, Koivula T: Aneuploid DNA content and high Sphase fraction of tumor cells are related to poor prognosis in patients with primary breast cancer. Eur J Cancer Clin Oncol 23: 277–282, 1987

    PubMed  Google Scholar 

  38. Ewers S-B, Långström E, Baldetorp B, Killander D: Flowcytometric DNA analysis in primary breast carcinomas and clinico-pathological correlations. Cytometry 5: 408–419, 1984

    PubMed  Google Scholar 

  39. Cornelisse CJ, de Koning HR, Moolenaar AJ, van de Velde CJ, Ploem JS: Image and flow cytometric analysis of DNA content in breast cancer. Relation to estrogen receptor content and lymph node involvement. Anal Quant Cytol 6: 9–18, 1984

    PubMed  Google Scholar 

  40. Moran RE, Black MM, Alpert L, Strauss MJ: Correlation of cell-cycle kinetics, hormone receptors, histopathology, and nodal status in human breast cancer. Cancer 54: 1586–1590, 1984

    PubMed  Google Scholar 

  41. Fallenius AG, Auer GU, Carstensen J: Prognostic significance of DNA measurements in 409 consecutive breast cancer patients. Cancer 62: 331–341, 1988

    PubMed  Google Scholar 

  42. Cornelisse CJ, van de Velde CJH, Caspers RJC, Moolenaar AJ, Hermans J: DNA ploidy and survival in breast cancer patients. Cytometry 8: 225–243, 1987

    PubMed  Google Scholar 

  43. Auer G, Ono J, Caspersson TO: Cytochemical identification of guiescent and growth-activated tumor cells. Anal Quant Cytol 5: 5–8, 1983

    PubMed  Google Scholar 

  44. Kute TE, Muss HB, Hopkins M, Marshall R, Case D, Kammire L: Relationship of flow-cytometry results to clinical and steroid receptor status in human breast cancer. Breast Cancer Res Treat 6: 113–121, 1985

    PubMed  Google Scholar 

  45. McDivitt RW, Stone KR, Craig RB, Meyer JS: A comparison of human breast cancer cell kinetics measured by flow cytometry and thymidine labeling. Lab Invest 52: 287–291, 1985

    PubMed  Google Scholar 

  46. Stål O, Klintenberg C, Franzén G, Risberg B, Arvidsson S, Bjelkenkrantz K, Skoog L, Nordenskjöld B: A comparison of static cytofluorometry and flow cytometry for the estimation of ploidy and DNA replication in human breast cancer. Breast Cancer Res Treat 7: 15–22, 1986

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Rosen, A., Rutqvist, L.E., Carstensen, J. et al. Prognostic value of nuclear DNA content in breast cancer in relation to tumor size, nodal status, and estrogen receptor content. Breast Cancer Res Tr 13, 23–32 (1989). https://doi.org/10.1007/BF01806547

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806547

Key words

Navigation