Skip to main content
Log in

Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: Mechanistic studies

  • Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

In the transplantable MXT mammary tumor model of the mouse and in the DMBA- and MNU-induced mammary tumor models of the rat, the progesterone antagonists ZK 98.299 and RU 38.468 were shown to have potent antitumor activity. The weight and/or morphology of the ovaries, uterus, and vagina, as well as the effects on serum hormone levels, indicate that the antitumor activity of both antiprogesterones in these models does not depend on a blockade of the ovarian and pituitary functions and does not depend on a non receptor-mediated cytotoxic effect.

On the other hand, the morpholoy of the MXT and the DMBA-induced mammary tumors after treatment with the progesterone antagonists is completely different from that observed after ovariectomy. Treatment with the antiprogesterones seems to trigger differentiation of the mitotically active polygonal tumor cells towards glandular structures and acini with a massive sequestering of secretory products, as well as towards spindle-shaped necrobiotic subpopulations. By contrast, the induction of tumor cell degeneration and cytolysis is the predominant feature of the mammary tumors after ovariectomy.

In conclusion, our results indicate that the main mechanism of the antitumor action of antiprogesterones in these models is a direct progesterone receptor-mediated antiproliferative effect at the level of the mammary tumor cells, most probably via the induction of terminal differentiation associated with terminal cell death. This antiproliferative effect seems to be dissociated from the antihormone (antiprogestational) activity of these progesterone antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Herrman W, Wyss R, Riondel A, Philibert D, Teutsch G, Sakiz E, Baulieu EE: Effet d'un steroide antiprogesterone chez la femme interruption du cycle menstruel et de la grossesse au debut. C R Acad Sci Paris 294: 933, 1982

    Google Scholar 

  2. Elger W, Beier S, Chawalisz K, Fähnrich M, Hasan SH, Henderson D, Neef G, Rohde R: Studies on the mechanisms of action of progesterone antagonists. J Steroid Biochem 25: 835–845, 1986

    PubMed  Google Scholar 

  3. Maudelonde T, Romieu G, Ulmann A, Pujol H, Grenier J, Khalaf S, Cavalie G, Rochefort H: First clinical trial on the use of the antiprogestin RU 486 in advanced breast cancer. In: Klijn JGM, Paridaens R, Foekens JA (eds) Hormonal Manipulation of Cancer: Peptides, Growth Factors and New (Anti) Steroidal Agents. Raven Press, New York, 1987, pp 55–59

    Google Scholar 

  4. Gill PG, Vignon F, Bardon S, Derocq D, Rochfort H: Difference between R5020 and the antiprogestin RU 486 in antiproliferative effects on human breast cancer cells. Breast Cancer Res Treat 10: 37–45, 1987

    PubMed  Google Scholar 

  5. Bakker GH, Setyono-Han B, de Jong FH, Klijn JGM: Mifepriston in treatment of experimental breast cancer in rats. In: Klijn JGM, Paridaens R, Foekens JA (eds) Hormonal Manipulation of Cancer: Peptides, Growth Factors and New (Anti) Steroidal Agents. Raven Press, New York, 1987, pp 39–48

    Google Scholar 

  6. Schneider MR, Michna H, Nishino Y, El Etreby MF: Antitumor activity of the progesterone antagonists ZK 98.299 and RU 486 in the hormone-dependent MXT mammary tumor model of the mouse and the DMBA- and MNU-induced mammary tumor model of the rat. Eur J Cancer Clin Oncol 25: 691–701, 1989

    PubMed  Google Scholar 

  7. Bardon S, Vignon F, Montcourrier P, Rochefort H: Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res 47: 1441–1448, 1987

    PubMed  Google Scholar 

  8. Philibert D, Deraedt R, Deutsch G: RU 486, a potent antiglucocorticoidin vivo. Program of the 8th International Congress of Pharmacology, Tokyo, Abstract No 1463, 1988

  9. Neef G, Beier S, Elger W, Henderson D, Wiechert R: New steroids with antiprogestational and antiglucocorticoid activities. Steriods 44: 349–372, 1984

    Google Scholar 

  10. Henderson D: Antiprogestational and antiglucocorticoid activities of some novel 11β-aryl substituted steroids. In: Furr BJA, Wakeling AE (eds) Pharmacology and clinical uses of inhibitors of hormone secretion and action. Bailliere Tindall, London, 1987, pp 184–211

    Google Scholar 

  11. Watson CS, Medina D, Clark JH: Estrogen receptor characterization in a transplantable mouse mammary tumor. Cancer Res 37: 3344–3348, 1977

    PubMed  Google Scholar 

  12. Romeis B: Mikroskopische Technik. Oldenbourg, München, 1968

  13. Venable JH, Coggeshall R: A simplified lead citrate stain for use in electron microscopy. J Cell Biol 25: 407–408, 1965

    PubMed  Google Scholar 

  14. Danguy A, Kiss R, Leclercq G, Henson JC, Pasteels JL: Morphology of MXT mouse mammary tumors. Correlation with growth characteristics and hormone sensitivity. Eur J Cancer Clin Oncol 22: 69–75, 1986

    PubMed  Google Scholar 

  15. Leclercq G, Danguy A, Henson JC: MXT mouse mammary tumor: Effect of ovariectomy on estrogen receptors and histopathology. IRCS Med Sci 10: 71–72, 1982

    Google Scholar 

  16. Van der Schoot P, Bakker GH, Klijn JGM: Effects of the progesterone antagonist RU 486 on ovarian activity in the rat. Endocrinology 121: 1375–1382, 1987

    PubMed  Google Scholar 

  17. Bakker GH, Setyono-Han B, Lamberts SWJ, De Jong FH, Klijn JGM: Treatment of rat mammary tumors with Mifepristone (RU 486). AACR Abstracts 71, 1984

  18. Philibert D, Moguilewsky M, Mary J, Lecaque D, Tournemine C, Secchi J, Deraedt R: Pharmacological profile of RU 486 in animals. In: Baulieu EE, Segal S (eds) The Antiprogestin Steroid RU 486 and Human Fertility Control. Plenum, New York, 1987, pp 49–68

    Google Scholar 

  19. Wakeling AE, Bowler J: Biology and mode of action of pure antiestrogens. J Steroid Biochem 30: 141–147, 1988

    PubMed  Google Scholar 

  20. Schieweck K, Bhatnagar AS, Matter A: CGS 16949 A, a new nonsteroidal aromatase inhibitor: effects on hormonedependent and -independent tumorsin vivo. Cancer Res 48: 834–838, 1988

    PubMed  Google Scholar 

  21. Healy DL, Hodgen GD: Non-human primate studies with RU 486. In: Baulieu EE, Segal S (eds) The Antiprogestin Steroid RU 486 and Human Fertility Control. Plenum, New York, 1987, pp 127–140

    Google Scholar 

  22. Frederici HHR, De Cloux RJ: The early response of immature rat myometrium to estrogenic stimulation. J Ultrastruct Res 22: 402–412, 1968

    PubMed  Google Scholar 

  23. Borell U, Nilsson O, Westman A: The cyclic changes occuring in the epithelium lining the endometrial glands. An electron-microscopical study in the human being. Acta Obstet Gynecol Scand 38: 364–377, 1959

    PubMed  Google Scholar 

  24. Pollard JW, Pacey J, Cheng SVY, Jordan EG: Estrogens and cell death in murine uterine luminal epithelium. Cell Tissue Res 249: 533–540, 1987

    PubMed  Google Scholar 

  25. Tschernitchin A: Fine structure of rat uterine eosinophils and the possible role of eosinophils in the mechanism of estrogen action. J Steroid Biochem 4: 277–412, 1973

    PubMed  Google Scholar 

  26. Sachs L: Cell differentiation and bypassing of genetic defects in the suppression of malignancy. Cancer Res 47: 1981–1986, 1987

    PubMed  Google Scholar 

  27. Campisi J, Fingert HJ, Pardee AB: Basic biology and biochemistry of cancer. In: Knapp RC, Berkowitz RS (eds) Gynecologic Oncology. Macmillan, New York, 1986, pp 3–46

    Google Scholar 

  28. Frei E, Peters WP: Tumor invasion and metastasis: Pathogenesis and therapeutic implications. In: Knapp RC, Berkowitz RS (eds) Gynecologic Oncology. Macmillan, New York, 1986, pp 47–64

    Google Scholar 

  29. De Launoit Y, Kiss R, Danguy A, Paridaens R: Effect of ovariectomy, hypophysectomy and/or GnRH analog (HRF) administration on the cell proliferation of the MXT mouse hormone-dependent mammary tumor. Eur J Clin Oncol 23: 1443–1450, 1987

    Google Scholar 

  30. Vignon F, Bardon S, Chalbos D, Derocq D, Gill P, Rochefort H: Antiproliferative effect of progestins and antiprogestins in human breast cancer cells. In: Klijn JGM, Paridaens R, Foekens JA (eds) Hormonal Manipulation of Cancer: Peptides, Growth Factors and New (Anti) Steroidal Agenst. Raven, New York, 1987, pp 47–54

    Google Scholar 

  31. Chalbos D, Rochefort H: A 250-kilodalton cellular protein is induced by progestins in two human breast cancer cell lines MCF7 and T47D. Biochem Biophys Res Commun 121: 421–427, 1984

    PubMed  Google Scholar 

  32. Chalbos D, Rochefort H: Dual effects of the progestin R 5020 on proteins released by the T47D. J Biol Chem 259: 1231–1238, 1984

    PubMed  Google Scholar 

  33. Nishino Y, Michna H, Schneider MR, Hasan S-H, El Etreby MF: Studies on the tumor-inhibiting effect of a new antiprogestin, ZK 98.299, in female rats bearing DMBA-induced mammary tumors. Acta Endocrinol 120: 236–237, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michna, H., Schneider, M.R., Nishino, Y. et al. Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: Mechanistic studies. Breast Cancer Res Tr 14, 275–288 (1989). https://doi.org/10.1007/BF01806299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806299

Key words

Navigation