Skip to main content
Log in

Thigmomorphogenesis inBryonia dioica: Changes in soluble and wall peroxidases, phenylalanine ammonia-lyase activity, cellulose, lignin content and monomeric constituents

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Rubbing young internodes ofBryonia dioica results in a reduced elongation and an increased diameter of the internodes. In the present study activities of some enzymes involved in the lignification process and levels of lignification were compared in rubbed and non-rubbed internodes. Rubbing caused an increase in the activities of phenylalanine ammonia-lyase and soluble and ionically- and covalently-bound cell wall peroxidases. Sensitivity of the covalently-bound wall peroxidase assay was markedly increased if syringaldazine was used as a substrate. Mechanical perturbation induced an increase in lignin, lignin monomer (sinapylic, coniferylic and p-coumarylic alcohols) content and the number of lignifying vessels. Conversely, rubbing resulted in a decrease in cellulose content. The hypothetical interpretation of the thigmomorphogenetic response through cell wall lignification and hence rigidification is consistent with all the presented results. A comparison is possible between this accelerated lignification and induced lignification as a mechanism of disease resistance. the thigmomorphogenetic response inBryonia dioica can be considered as a mechanism of resistance in order to withstand further environmental mechanical perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AlibertG and BoudetA (1979) La lignification chez le peuplier I. Mise au point d'une méthode de dosage et d'analyse monomérique des lignines. Physiol Vég 17:67–74

    Google Scholar 

  2. BellA (1981) Biochemical mechanisms of disease resistance. Ann Rev Plant Physiol 32:21–81

    Google Scholar 

  3. BiroRL, HuntER, ErnerT and JaffeMJ (1980) Thigmomorphogenesis: Changes in cell division and elongation in the internodes of mechanically perturbed or ethreltreated bean plants. Ann Bot 45:655–664

    Google Scholar 

  4. BireckaD and MillerA (1974) Cell wall and protoplast isoperoxidases in relation to injury, indolacetic acid, and ethylene effects. Plant Physiol 533:569–574

    Google Scholar 

  5. BlandD and ScurfieldG (1964) The chemistry of reaction wood. IV. The distribution and nature of lignin in seedlings of hardwood. Holzforschung 18:161–166

    Google Scholar 

  6. BoyerN, DesbiezM-O, HofingerM and GasparTh (1983) Effect of lithium on thigmomorphogenesis inBryonia dioica. Ethylene production and sensitivity. Plant Physiol 72: 522–525

    Google Scholar 

  7. BoyerN, GasparTh and LamondM (1979) Modifications des isoperoxydases et de l'allongement des entre-noeuds de Bryone à la suite d'irritations mécaniques. Z Pflanzenphysiol 93:459–470

    Google Scholar 

  8. DeJaegherG, BoyerN and GasparTh (1983) Intervention d'acides phénoliques dans la résponse thigmomorphogénétique deBryonia dioica. Groupe Polyphénols, Bulletin de laison 11:158–163

    Google Scholar 

  9. FreudenbergK, ReznikH, BoesenbergH and RasenackD (1952) Das an der Verholzung beteiligte Fermentsystem. Chem Ber 85:641–647

    Google Scholar 

  10. GalstonAW and DaviesPJ (1969) Hormonal regulation in higher plants. Science 163:1288–1297

    PubMed  Google Scholar 

  11. GoldbergR, CatessonA-M and CzaninskiY (1983) Some properties of syringaldazine oxidase, a peroxidase specifically involved in the lignification process. Z Pflanzenphysiol 110:267–279

    Google Scholar 

  12. GrandC and RanjevaR (1979) La lignification chez le peuplier. III. Variation du niveau d'activité d'enzymes impliquées dans la biosynthèse des monomères en fonction du degré de lignification et de la nature des tissus. Physiol Vég 17:433–444

    Google Scholar 

  13. GrossGG, JanseC and ElstnerEF (1977) Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Amoracia lapathifolia Gilib.). Planta 136:271–276

    Google Scholar 

  14. HarkinJM and ObstJR (1973) Lignification in trees: Indication of exclusive peroxidase participation. Science 180:296–298

    Google Scholar 

  15. HarrisPJ and HartlyRD (1976) Detection of bound ferulic acid in cell walls of the Graminae by ultraviolet fluorescence microscopy. Nature 259:508–510

    Google Scholar 

  16. HofingerM, ChapelleB, BoyerN and GasparTh (1979) GC-MS identification and titration of IAA in mechanically perturbedBryonia dioica. Plant Physiol 63 S: 52

    Google Scholar 

  17. JaffeMJ (1973) Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation with special reference toBryonia dioica. Planta 114:143–157

    Google Scholar 

  18. JohnsonDB, MooreWE and ZankLC (1961) The spectrophotometric determination of lignins in small wood samples. TAPPI 44:793–798

    Google Scholar 

  19. LetouzéR (1975) Croissance d'un bourgeon axillaire chezSaliz babylonica L. et activité phénylalanine ammoniac-lyase. Planta 123:155–162

    Google Scholar 

  20. MacnicolPK (1966) Isoperoxidases of the Alaska pea (Pisum sativum L.) Arch Biochem Biophys 117:347–356

    PubMed  Google Scholar 

  21. MäderM, MeyerY and BoppM (1975) Lokalisation der Peroxidase Isoenzyme in Protoplasten und Zellwänden vonNicotiana tabacum L. Planta 122:259–268

    Google Scholar 

  22. MäderM, UngemachJ and SchlossP (1980) The role of peroxidase isoenzyme groups ofNicotiana tabacum in hydrogen peroxide formation. Planta 147:467–470

    Google Scholar 

  23. MarigoM and BoudetAM (1980) Relation polyphénols-croissance, lignification et limitation de croissance chezLycopersicum esculentum Physiol Plant 49:425–430

    Google Scholar 

  24. RhodesM and WooltortonL (1973) Stimulation of phenolic acid and lignin biosynthesis in swede root tissue by ethylene. Phytochem 12:107–118

    Google Scholar 

  25. RidgeI and OsborneD (1970) Hydroxyproline and peroxidases in cell walls ofPisum sativum: Regulation by ethylene. J Exp Bot 21:843–856

    Google Scholar 

  26. RobertsLW and MillerAR (1983) Is ethylene involved in xylem differentiation? Vistas Plant Sci 6:1–24

    Google Scholar 

  27. RobitailleHA and LeopoldAC (1974) Ethylene and the regulation of apple stem growth under stress. Physiol Plant 32:301–304

    Google Scholar 

  28. RuberyPH and FosketDE (1969) Changes in phenylalanine ammonia-lyase activity during xylem differentiation inColeus and soybean. Planta 87:54–62

    Google Scholar 

  29. SarkanenKV and HergertHL (1971) Classification and distribution. In: SarkanenKV and LudwigCH, eds. Lignins, Occurrence, Formation, Structure and Reactions, 43–94. New York, London, Sydney and Toronto: Wiley Interscience

    Google Scholar 

  30. ShannonMC, BallalSK and HarrisJW (1973) Starch gel electrophoresis of enzymes from nine species ofPolysporus. Amer J Bot 60:96–100

    Google Scholar 

  31. SpectorT (1978) Refinement of the coomasie blue method of protein quantitation. Anal Biochem 86:142–146

    PubMed  Google Scholar 

  32. VanceCP, KirkTK and SherwoodRT (1980) Lignification as a mechanism of disease resistance. Ann Rev Phytopathol 18:259–288

    Google Scholar 

  33. WestcottRG and HenshawGG (1976) Phenolic synthesis and phenylalanine amonia-lyase activity in suspension cultures ofAcer pseudoplatanus L. Planta 131:67–72

    Google Scholar 

  34. WhitmoreFW (1981) Lignin-protein complex in cell walls ofPinus elliottii: Amino acid constituents. Phytochem 21:315–318

    Google Scholar 

  35. WolterKE and GordonJC (1975) Peroxidases as indicators of growth and differentiation in aspen callus cultures. Physiol Plant 33:219–223

    Google Scholar 

  36. ZobelRW (1973) Some physiological characteristics of the ethylene-requiring tomato mutant diageotropica. Plant Physiol 52:385–389

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partly supported by the Belgian FRFC grant 2.9009 to T.G. and by the French CNRS (LA 45, RCP 474).

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jaegher, G., Boyer, N. & Gaspar, T. Thigmomorphogenesis inBryonia dioica: Changes in soluble and wall peroxidases, phenylalanine ammonia-lyase activity, cellulose, lignin content and monomeric constituents. Plant Growth Regul 3, 133–148 (1985). https://doi.org/10.1007/BF01806053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01806053

Key words

Navigation