Breast Cancer Research and Treatment

, Volume 5, Issue 3, pp 277–283 | Cite as

Lectin binding sites in cultured human breast cancer cells

  • Elisabeth Müller-Holzner
  • Christian Marth
  • Eva Kofler
  • Günther Daxenbichler
  • Ferdinand Hofstädter


Two estrogen-sensitive (ZR 75.1 and 734 B) and two estrogen-independent (BT 20 and Hs 578 T) human breast cancer cell lines, and one larynx carcinoma cell line (Hep. 2), were investigated immunocytochemically for the occurrence of lectin binding sites. Peroxidase-labeled peanut agglutinin (PNA) was used. PNA binding sites could be observed in estrogen-sensitive cell lines only. In ZR 75.1, the most estrogen-sensitive cell line, PNA binding sites were also observed without neuraminidase pretreatment. In our study, PNA binding is associated with the biological estrogen dependence of the tumor cells.


breast cancer cell culture estrogen sensitivity lectin binding peanut agglutinin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanley P: Microheterogeneity among carbohydrate structures at the cell surface may be important in recognition phenomena. Cell 23: 763–769, 1981PubMedGoogle Scholar
  2. 2.
    Burger MM: Surface changes in transformed cells detected by lectins. Fed Proc 32: 91–100, 1973PubMedGoogle Scholar
  3. 3.
    Ponder BA: Lectin histochemistry. In: Pollak JM, Van Noorden S (eds): Immunocytochemistry — Practical Applications in Pathology and Biology. Wright — PSG., 1983, pp 129–142Google Scholar
  4. 4.
    Rapin A, Burger M: Tumor cell surfaces: General alterations detected by agglutinins. Adv Cancer Res 20: 1–86, 1973Google Scholar
  5. 5.
    Franklin WA: Tissue binding of lectins in disorders of the breast. Cancer 51: 295–300, 1983PubMedGoogle Scholar
  6. 6.
    Howard DR, Batsakis JG: Cytostructural localization of the tumor associated antigen. Science 210: 201–203, 1980PubMedGoogle Scholar
  7. 7.
    Howard DR, Ferguson P, Batsakis JG: Carcinoma associated cytostructural antigenic alterations: Detection by lectin binding. Cancer 47: 2872–2877, 1981PubMedGoogle Scholar
  8. 8.
    Klein PJ, Newman RA, Müller P, Uhlenbruck G, Schaefer HE, Lennartz KJ, Fischer R: Histochemical methods for the demonstration of Thomsen-Friedenreich antigen in cell suspension and tissue sections. Klin Wschr 56: 761–765, 1978PubMedGoogle Scholar
  9. 9.
    Klein PJ, Newman RA, Müller P, Uhlenbruck G, Citoler P, Schaefer HE, Lennartz KJ, Fischer R: The presence of the Thomsen-Friedenreich antigen in mammary gland. II. Its topochemistry in normal, hyperplastic and carcinoma tissue of the breast. J Cancer Res Clin Oncol 93: 205–214, 1979PubMedGoogle Scholar
  10. 10.
    Newman RA, Klein PJ, Rudland PS: Binding of peanut lectin to breast epithelium, human carcinomas and cultured rat mammary stem cells: Use of lectin as a marker of mammary differentiation. J Natl Cancer Inst 63: 1339–1346, 1979PubMedGoogle Scholar
  11. 11.
    Springer DF, Desai PR, Banatwala: Blood group MN precursors as human breast carcinoma associated antigens and naturally occurring human cytotoxins against them. Cancer 37: 169–176, 1976PubMedGoogle Scholar
  12. 12.
    Walker RA: The binding of fluorescent-labelled Concanavalin A to human breast tissue — a marker of differentiation. J Pathol 140: 255–265, 1983PubMedGoogle Scholar
  13. 13.
    Asch BB, Medina D: Concanavalin A induced agglutinability of normal, preneoplastic and neoplastic mouse mammary cells. J Natl Cancer Inst 61: 1423–1430, 1978PubMedGoogle Scholar
  14. 14.
    Furmanski P, Phillipps PG, Lubin M: Cell surface interactions with Concanavalin A: Determination by microhaem-adsorption. Proc Soc Exp Biol Med 140: 216–219, 1972PubMedGoogle Scholar
  15. 15.
    Furmanski P, Kirkland WL, Gargala T, Rich MA and breast cancer study clinical associates: Prognostic value on Concanavalin A reactivity of primary human breast cancer cells. Cancer Res 41: 4087–4092, 1981PubMedGoogle Scholar
  16. 16.
    Voyles BA, McGrath CM: Markers to distinguish normal and neoplastic mammary epithelial cells in vitro: Comparison of saturation density, morphology and Concanavalin A reactivity. Int J Cancer 18: 498–509, 1976PubMedGoogle Scholar
  17. 17.
    Voyles BA, Kirkland WL, Furmanski P, McGrath CM: Concanavalin A-mediated haemadsorption by normal and malignant human mammary epithelial cells. Cancer Res 38: 1578–1583, 1978PubMedGoogle Scholar
  18. 18.
    Newman RA, Uhlenbruck G: Investigations into the occurrence and structure of lectin receptors on human and bovine erythrocyte, milk fat globule and lymphocyte plasma-mem-brane glycoproteins. Eur J Biochem 76: 149–155, 1977PubMedGoogle Scholar
  19. 19.
    Klein PJ, Vierbuchen M, Schulz KD, Wurz H, Citoler P, Uhlenbruck G, Ortmann M, Fischer R: Hormonabhängige Lektinbindungsstellen. II. Lektinrezeptoren als Indikator einer Hormonsensibilität von Mammakarzinomen. Tumor Diagnostik 2: 240–245, 1981Google Scholar
  20. 20.
    Vierbuchen M, Klein PJ, Uhlenbruck G, Fischer R: Hormonabhängige Lektinbindungsstellen: I. Histochemischer Nachweis von Lektinbindungsstellen und ihre hormonelle Steuerung im Brustdrüsengewebe der Ratte. Tumor Diagnostik 2: 235–239, 1981Google Scholar
  21. 21.
    Lee SH: Cytochemical study of estrogen receptor in human mammary cancer. Am J Clin Path 70: 193–203, 1978Google Scholar
  22. 22.
    Lee SH: Cellular estrogen and progesterone receptors in mammary carcinoma. Am J Clin Path 73: 323–329, 1980PubMedGoogle Scholar
  23. 23.
    Pertśchuk LP: An improved histochemical method for detection of estrogen receptors in mammary cancer. Am J Clin Path 71: 504–508, 1979PubMedGoogle Scholar
  24. 24.
    Chamness GC, Mercer WD, McGuire WL: Are histochemical methods for estrogen receptor valid? J Histochem Cytochem 28: 792–798, 1980PubMedGoogle Scholar
  25. 25.
    Daxenbichler G, Weiss P, Ortner A, Dapunt O: Microscopic visualisation of steroid receptor sites — a mirage? Rec Results Cancer Res 91: 75–85, 1984Google Scholar
  26. 26.
    Jensen EV, DeSombre ER: Estrogen receptor interaction. Science 182: 124–126, 1973Google Scholar
  27. 27.
    McGuire WL, Carbone PP, Sears ME, Esher GL: Estrogen receptors in human breast cancer: an overview. In: McGuire WL, Carbone PP, Vollmer EP (eds): Estrogen Receptors in Human Breast Cancer. Raven Press, New York, 1975, pp 1–7Google Scholar
  28. 28.
    Soule H, Vasquez J, Long AS, Albert S, Brennan M: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst 51: 1409–1416, 1974Google Scholar
  29. 29.
    Hackett AJ, Smith HS, Springer EL, Owens RB, Nelson-Rees WA, Riggs JL, Gardner MB: Two syngenic cell lines from human breast tissue: The aneuploid mammary epithelial (Hs 578 T) and the diploid myoepithelial (Hs 578 Bst) cell lines. J Natl Cancer Inst 58: 1795–1806, 1977PubMedGoogle Scholar
  30. 30.
    Lasfargues EY, Ozzella L: Cultivation of human breast carcinomas. J Natl Cancer Inst 21: 1131–1147, 1958PubMedGoogle Scholar
  31. 31.
    Darbre P, Yates I, Curtis S, King RB: Effect of estradiol on human breast cancer cells in culture. Cancer Res 43: 249–257, 1983Google Scholar
  32. 32.
    Engel LW, Young NA, Tralka TS, Lippman ME, O'Brien SJ, Joyce MJ: Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res 38: 3352–3364, 1978PubMedGoogle Scholar
  33. 33.
    Buehring GC, Hackett AJ: Human breast tumor cell lines: Identity evaluation by ultrastructure. J Natl Cancer Inst 53: 621–629, 1974PubMedGoogle Scholar
  34. 34.
    Nelson-Rees WA, Flandermeyer RR, Hawthorne PK: Distinctive banded marker chromosomes of human tumor cell lines. Int J Cancer 16: 74–82, 1975PubMedGoogle Scholar
  35. 35.
    Ceriani RL, Thompson K, Peterson JA, Abraham S: Surface differentiation antigens of human mammary epithelial cells carried on the human milk fat globule. Proc Natl Acad Sci 74: 582–586, 1977PubMedGoogle Scholar
  36. 36.
    Moore AE, Sabachewsky L, Toolan HW: Culture characteristics of four permanent lines of human cancer cells. Cancer Res 15: 596–606, 1955Google Scholar
  37. 37.
    Coezy E, Borgna JL, Rochefort H: Tamoxifen and metabolites in MCF7 cells: Correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 42: 317–323, 1982PubMedGoogle Scholar
  38. 38.
    Marth C, Hofstädter F, Buehring GC, Daxenbichler G: Tamoxifen and its metabolites: Binding to estrogen receptor and growth effects on breast cancer cells. Acta Endocrinol Suppl 253: 61–62, 1983Google Scholar
  39. 39.
    Stoward PJ, Spicer SS, Miller RL: Histochemical reactivity of peanut lectin-horseradish peroxidase conjugate. J Histochem Cytochem 28: 979–990, 1980PubMedGoogle Scholar
  40. 40.
    Lotan R, Shutelsky E, Danon D, Sharon N: Purification, composition and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 250: 8518–8523, 1975PubMedGoogle Scholar
  41. 41.
    Jungermann K, Möhler H: Biochemie. Springer-Verlag, Berlin-Heidelberg, New York, 1980Google Scholar

Copyright information

© Martinus Nijhoff Publishers Publishers 1985

Authors and Affiliations

  • Elisabeth Müller-Holzner
    • 1
  • Christian Marth
    • 2
  • Eva Kofler
    • 1
  • Günther Daxenbichler
    • 2
  • Ferdinand Hofstädter
    • 1
  1. 1.Department of Pathological AnatomyInstitut für Pathologische AnatomieInnsbruckAustria
  2. 2.Department of Gynecology and ObstetricsInstitut für Pathologische AnatomieInnsbruckAustria

Personalised recommendations