Wärme - und Stoffübertragung

, Volume 11, Issue 3, pp 207–216 | Cite as

Radiative melting of a horizontal clear ice layer

  • N. Seki
  • M. Sugawara
  • S. Fukusako
Article

Abstract

In this paper the horizontal layer of clear ice sticking to the substrate is melted by comparatively short wave radiation similar to solar radiation for the purpose of removing ice from the surface of the material subject to atmospheric icing. The radiating source used for melting is 300 wattages halogen lamps whose color temperature is 3200‡K at 100 voltages. From the present investigation, a typical phenomenon of backmelting is observed clearly and it can be found that the predicted results including the melting rate of upper and lower layers which are melted by radiant energy impinged on or penetrated the ice layer are in good agreement with the experimental results.

Keywords

Solar Radiation Halogen Radiant Energy Short Wave Short Wave Radiation 

Nomenclature

av

monochromatic absorption coefficient

A

transmission (= q r + {hi}/qro)

cp

specific heat

Ebv

monochromatic emissive power

hD

mass transfer coefficient

hi

initial thickness of ice layer

hm

thickness of substrate

Li

latent heat of melting

Lw

latent heat of evaporation or condensation

\(q_{h_i } \)

heat flux absorbed at surface of substrate

qr0

radiant heat flux impinged onto ice or free surface

qr+{y}

forward radiant heat flux

qr{y}

backward radiant heat flux

S1

thickness of upper melt layer

S2

thickness of lower melt layer

S'2

distance from free surface to bottom surface of ice layer

t

time

T

temperature

T1

temperature of air-water or air-ice interface

T2

temperature of substrate surface

T3

temperature of back side surface of substrate

Tb

temperature of radiating source

Ti

temperature in ice layer

Tw1

temperature in upper melt layer

Tw2

temperature in lower melt layer

T

environmental temperature

Ww

saturated vapor concentration at free surface

Wt8

vapor concentration at environment

y

distance from free or ice surface

δy

grid size of water or ice

δym

grid size of substrate

Greek symbols

α

heat transfer coefficient

Β

spectral absorptivity

Βt

total absorptivity

иi

thermal diffusivity of ice

иm

thermal diffusivity of substrate

иw

thermal diffusivity of water

λi

thermal conductivity of ice

λm

thermal conductivity of substrate

λw

thermal conductivity of water

Ν

wavelength

ρav

densitiy of air-vapor mixture

ρi

density of ice

σ

Stefan-Boltzman constant

Aufschmelzen einer waagerechten Klareisschicht durch Strahlung

Zusammenfassung

Eine waagerechte Klareisschicht, die auf einer Unterlage aufgefroren war, wurde durch kurzwellige Strahlung, Ähnlich der Sonnenstrahlung, zum Schmelzen gebracht, um die Entfernung von Eis nach atmosphÄrischer Vereisung zu untersuchen. Die Strahlungsquelle war eine 300 Watt-Halogenlampe mit einer Farbtemperatur von 3200 Kelvin bei 100 Volt. Als typische Erscheinung wurde ein “Rückseiten-Schmelzen” gefunden, im übrigen sind die vorausberechneten Schmelzraten an der Ober- und der Unterseite durch aufgenommene oder durchgelassene Strahlungsenergie in guter übereinstimmung mit den Messungen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yen, Y.C.: On the effect of density inversion on natural convection in a melted water layer. Chem. Engng. Symp. Ser.65 (1968) 245/253Google Scholar
  2. 2.
    Boger, D.V.; Westwater, J.: Effect of buoyancy on the melting and freezing process. J. Heat Transfer, Trans. ASME. Ser. C,89 (1967) 81/89Google Scholar
  3. 3.
    Lock, G.S.H.; Gunderson, J.R.; Quon, D.; Donnelly, J.K.: A study of one-dimensional ice formation with particular reference to periodic growth and decay. Int. J. Heat and Mass Transfer.12 (1969) 1343/1352Google Scholar
  4. 4.
    Sugawara, M.; Fukusako, S.; Seki, N.: Experimental studies of the melting of a horizontal ice layer. Bulletin of JSME.18 (1975) 714/721Google Scholar
  5. 5.
    Gilpin, R.R.; Robertson, R.B.; Singh, B.: Radiative heating in ice. J. Heat Transfer, Trans. ASME. Ser. C,99 (1977) 227/232Google Scholar
  6. 6.
    Sun, Z.S.; Tien, C; Yen, Y.C.: Thermal instability of a horizontal layer of liquid with maximum density. AIChE. J.15 (1969) 910/915Google Scholar
  7. 7.
    Seki, N.; Fukusako, S.; Sugawara, M.: A criterion of free convection in a horizontal melted water layer with free surface. J. Heat Transfer, Trans. ASME. Ser. C,99, (1977) 92/98Google Scholar
  8. 8.
    Murray, W.D.; Landis, F.: Numerical and machine solutions of transient heat-conduction problem involving melting or freezing. J. Heat Transfer. Trans. ASME. Ser. C,81 (1959) 106/112Google Scholar
  9. 9.
    Eckert, E.R.G.; Drake, R.M.: Analysis of heat and mass transfer. McGraw-Hill Book Co. 1972Google Scholar
  10. 10.
    Goodrich, L.E.: Review of radiation absorption coefficients for clear ice in the spectral region 0.3 R-3 microns. Paper No. 331, Division of building reserch, NRC (Canada), Dec. 1970Google Scholar
  11. 11.
    Maeno, N.; Observation of internal and surface melting of ice. Low-Temperature Science, Ser. A28, (1978) 23/31Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • N. Seki
    • 1
  • M. Sugawara
    • 1
  • S. Fukusako
    • 1
  1. 1.Department of Mechanical EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations