Advertisement

Wärme - und Stoffübertragung

, Volume 11, Issue 3, pp 145–156 | Cite as

Free convective heat transfer with density inversion in a confined rectangular vessel

  • N. Seki
  • S. Fukusako
  • H. Inaba
Article

Abstract

An experimental and analytical investigation pertaining to the effect of density inversion on steady free convective heat transfer of water in a confined rectangular vessel in which different temperatures are imposed on the opposing vertical walls is carried out. Water, as a testing fluid, has its maximum density at 4‡C. Temperature of the cold wall is maintained at 0‡C, while that of the hot wall is varied from 1‡C to 12‡ C. Photographs and analytical descriptions of the flow patterns, temperature distributions and average Nusselt number are presented. Moreover, the effect of dimensions of a rectangular vessel on the average Nusselt number is investigated. From the present investigation, it can be demonstrated both experimentally and analytically that the density inversion of water have an influential effect on the free convection heat transfer in the prescribed water layer, moreover, the average Nusselt number is a peculiar function of temperature difference between the cold and the hot walls, unlike the previous results for common fluids without density inversion.

Keywords

Heat Transfer Nusselt Number Convective Heat Transfer Free Convection Vertical Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Gr

Grashof number, gW3 c 2

H

height of rectangular vessel

Nu

average Nusselt number, defined as Eq. (11)

Nu*

average Nusselt number, qW/λδT

Pr

Prandtl number, Νc/αc

q

heat flux at wall

Ra*

Rayleigh number, g ¦Β¦δTW3/Να

T

temperature

δT

temperature difference, Th-Tc(=Th)

u′, v′

velocity components

u,v

non-dimensional velocity components, (u′,v′)W(√Gr Ν c )

x′,y′

coordinates

x,y

non-dimensional coordinates, (x′,y′)/W

W

width of rectangular vessel

Greek symbols

α

thermal diffusivity

Β

coefficient of cubical expansion

θ

non-dimensional temperature,(T-Tc)/(Th-Tc)

и

thermal conductivity

и*

non-dimensional thermal conductivity, и/иc

Μ

viscosity

Μ*

non-dimensional viscosity, Μ/Μc

Ν

kinematic viscosity

Ν*

non-dimensional kinematic viscosity, Ν/Νc

ρ

density

ρ*

non-dimensional density, ρ/ρc

ψ

stream function, defined as Eq. (3)

ψ

non-dimensional stream function, ψ/(√Gr Νc)

Ω

vorticity, defined as Eq. (2)

Ω

non-dimensional vorticity, ΩW2(√Gr Ν c )

Subscripts

c

refers to cold wall

h

refers to hot wall

WÄrmeübergang bei freier Konvektion mit Dichte-Inversion in einem geschlossenen rechtwinkligen BehÄlter

Zusammenfassung

Der Einflu\ der Dichteumkehr von Wasser auf die stationÄre freie Konvektion in einem geschlossenen rechtwinkligen BehÄlter, dessen gegenüberliegende senkrechte WÄnde auf verschiedenen Temperaturen gehalten werden, ist experimentell und analytisch untersucht. Wasser hat sein Dichtemaximum bei 4‡C. Die kalte Wand ist auf 0‡C gehalten, die Temperatur der warmen Wand liegt zwischen 1‡C und 12‡C. Die Strömungsform, die Temperaturverteilung und die mittlere Nu\elt-Zahl werden durch photographische Aufnahmen und analytische Rechnungen beschrieben. Auch der Einflu\ der BehÄlterdimensionen auf die mittlere Nu\eltZahl ist angegeben. Es zeigt sich, da\ die Dichteumkehr den WÄremübergang in der Wasserschicht grundsÄtzlich verÄndern kann und da\ die Nu\elt-Zahl in eigentümlicher Weise vom angelegten TemperaturgefÄlle abhÄngt, im Gegensatz zu Älteren Ergebnissen für übliche Flüssigkeiten ohne Dichteumkehr.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Batchelor, G.K.: Heat transfer by free convection across a closed cavity between vertical boundary at different temperatures. Quart. J. Mech. Appl. Math.12, (1954) 209–233Google Scholar
  2. 2.
    Eckert, E.R.G.; Carson, W.O.: Natural convection in an air layer enclosed between two vertical plates with different temperatures. Int. J. Heat Mass Trans.2, (1961) 106–120Google Scholar
  3. 3.
    Dropkin, D.; Somerscales, E.: Heat transfer by natural convection in liquid confined by two parallel plates which are inclined at various angles with respect to the horizontal. J. Heat Transfer87C (1965) 77–84Google Scholar
  4. 4.
    Emery, A.F.; Chu, N.C.: Heat transfer across vertical layers. J. Heat Transfer87C (1965) 110–114Google Scholar
  5. 5.
    MacGregor, R.K.; Emery, A.F.: Free convection through vertical plane layers moderate and high Prandtl number fluids. J. Heat Transfer91C, (1969) 391–403Google Scholar
  6. 6.
    Chu, H.H.S.; Churchill, S.W.; Patterson, C.V. S.: The effect of heater size, location, aspect ratio, and boundary conditions on two dimensional, laminar, natural convection in rectangular channels. J. Heat Transfer98C, (1976) 194–201Google Scholar
  7. 7.
    Dumoré, J.M.; Merk, H.J.; Prins, J.A.: Heat transfer from water to ice by thermal condition. Nature, Lond.172 (1953) 480–461Google Scholar
  8. 8.
    Merk, H.J.: The influence of melting and anomalous expansion on the thermal convection in laminar boundary layer. Appl. Scient. Res.4 (1953) 435–452Google Scholar
  9. 9.
    Ede, A.J.: The influence of anomalous expansion on natural convection in water. Appl. Scient. Res.5, (1955) 458–460Google Scholar
  10. 10.
    Schechter, R.S.; Isbin, H.S.: Natural-convection heat transfer in regions of maximum fluid density. A.I.Ch.E. Jl4 (1958) 81–87Google Scholar
  11. 11.
    Vanier, C.R.; Tien, C.: Effect of maximum density and melting on natural convection heat transfer from a vertical plate. Chem. Engng. Prog. Sym. Ser.64 (1968) 240–254Google Scholar
  12. 12.
    Vanier, C.R.; Tien, C: Free convection melting of ice spheres. A.I.Ch.E. J116 (1970) 76–82Google Scholar
  13. 13.
    Bendell, M.: Gebhart, B.: Heat transfer and icemelting in ambient water near its density extremum. Int. J. Heat Transfer19 (1976) 1081–1087Google Scholar
  14. 14.
    Watson, A.: The effect of the inversion temperature on the convection of water in an enclosed rectangular cavity. Quart. J. Mech. Appl. Math.15 (1972) 423–446Google Scholar
  15. 15.
    Fujii, T.; Fujii, M.: On Grashof number in natural convection of water with density inversion. Preprints of 11th Japan Heat Transfer Symposium, C101 (1974) 369–372Google Scholar
  16. 16.
    Gosman, A.D.; Pun, W.M.; Runchal, A.K.; Spalding, D.B.; Wolfstein, M.: Heat and Mass Transfer.in Recirculating Flows. London-New York: Academic Press 1969Google Scholar
  17. 17.
    Hennecke, D.K.; Sparrow, E.M.; Ecker, E.R.G. Flow and heat transfer in a rotating enclosure with axial through flow. WÄrme- und Stoffübertragung4 (1971) 222–235Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • N. Seki
    • 1
  • S. Fukusako
    • 1
  • H. Inaba
    • 1
  1. 1.Department of Mechanical Engineering Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations