Metabolism of glycine in the normal individual and in patients with non-ketotic hyperglycinaemia

  • W. L. Nyhan
NKH Workshop


The metabolism of glycine is characterized largely by synthetic reactions. Even the catabolism of glycine appears to foster synthetic reactions because its cleavage leads to the formation of a one-carbon tetrahydrofolate compound which can serve in a variety of synthetic pathways. In non-ketotic hyperglycinaemia the activity of the glycine cleavage reaction is defective. This has been demonstratedin vivo andin vitro using liver and brain.


Public Health Internal Medicine Glycine Metabolic Disease Normal Individual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ando, T. and Nyhan, W. L. The excretion and formation of aminoacetone and δ-aminolevulinic acid in man.Tohoku J. Exp. Med. 99 (1969) 189–195PubMedGoogle Scholar
  2. Ando, T., Nyhan, W. L., Gerritsen, T., Gong, L., Heiner, D. C. and Bray, P. F. Metabolism of glycine in the non-ketotic form of hyperglycinemia.Pediatr. Res. 2 (1968) 254–263PubMedGoogle Scholar
  3. Baginski, M. L. and Huennekens, F. M. Electron transport function of the heat-stable protein and a flavoprotein in the oxidative decarboxylation of glycine byPeptococcus glycinophilus.Biochem. Biophys. Res. Commun. 23 (1966) 600–605PubMedGoogle Scholar
  4. Bakay, B. and Nyhan, W. L. Effects of thalidomide and chlorcyclizine on the biosynthesis of nucleic acids and proteins in fetal and maternal tissues of the rat.J. Pharmacol. Exp. Ther. 171 (1970) 109–117PubMedGoogle Scholar
  5. Baumgartner, E. R., Bachmann, C., Brechbühler, T. and Wick, H. Acute neonatal nonketotic hyperglycinemia: Normal propionate and methylmalonate metabolism.Pediatr. Res. 9 (1975) 559–564PubMedGoogle Scholar
  6. Brandt, N. J., Rasmussen, K., Brandt, S., Kølvraa, S. and Schonheyder, F.d-Glyceric-acidaemia and non-ketotic hyperglycinaemia.Acta Paediatr. Scand. 65 (1976) 17–22PubMedGoogle Scholar
  7. Childs, B., Nyhan, W. L., Borden, M., Bard, L. and Cooke, R. E. Idiopathic hyperglycinemia and hyperglycinuria, a new disorder of amino acid metabolism.Pediatrics 27 (1961) 522–538PubMedGoogle Scholar
  8. Christensen, H. N., Cooper, P. F., Johnson, R. D. and Lynch, E. L. Glycine and alanine concentrations of body fluids. Experimental modification.J. Biol. Chem. 168 (1947) 191–196Google Scholar
  9. DeGroot, C. J., Troelstra, J. A. and Hommes, F. A. Nonketotic hyperglycinemia: An in vitro study of the glycine-serine conversion in liver of three patients and the effect of dietary methionine.Pediatr. Res. 4 (1970) 238–243PubMedGoogle Scholar
  10. Dingeon, N., Rolland, M. O., Divry, P. and Cotte, J. Hyperglycinémie sans cétose. Étude biochimique et enzymatique.Ann. Biol. Clin. 35 (1977) 33–37Google Scholar
  11. Frazier, D. M., Summer, G. K. and Chamberlin, H. R. Hyperglycinuria and hyperglycinemia in two siblings with mild developmental delays.Am. J. Dis. Child. 132 (1978) 777–781PubMedGoogle Scholar
  12. Geison, R. L., Rowley, B. O'N. and Gerritsen, T. Urinary organic acid analysis in non-ketotic hyperglycinemia: Non-specific occurrence of free benzoic acid, due to a β-streptococcus infection.Clin. Chim. Acta 60 (1975) 137–142PubMedGoogle Scholar
  13. Gerritsen, T., Kaveggia, E. and Waisman, H. A. A new type of idiopathic hyperglycinemia with hypo-oxaluria.Pediatrics 36 (1965) 882–891PubMedGoogle Scholar
  14. Gerritsen, T., Nyhan, W. L., Rehberg, M. L. and Ando, T. Metabolism of glyoxylate in nonketotic hyperglycinemia.Pediatr. Res. 3 (1969) 269–274PubMedGoogle Scholar
  15. Hiraga, K., Kochi, H., Hayasaka, K., Kikuchi, G. and Nyhan, W. L. Defective glycine cleavage system in nonketotic hyperglycinemia. Occurrence of a less active glycine decarboxylase and an abnormal aminomethyl carrier protein.J. Clin. Invest. 68 (1981) 525–534PubMedGoogle Scholar
  16. Holmgren, G. and Blomquist, H. K. Non-ketotic hyperglycinemia in 2 sibs with mild psycho-neurological systems.Neuropaediatrie 8 (1977) 67–72Google Scholar
  17. Kawasaki, H., Sato, T. and Kikuchi, G. A new reaction for glycine biosynthesis.Biochem. Biophys. Res. Commun. 23 (1966) 227–233PubMedGoogle Scholar
  18. Kikuchi, G. The glycine cleavage system: Composition, reaction mechanism, and physiological significance.Mol. Cell Biochem. 1 (1973) 169–187PubMedGoogle Scholar
  19. Klein, S. M. and Sagers, R. D. Glycine metabolism. I. Propertics of the system catalyzing the exchange of bicarbonate with the carboxyl group of glycine inPeptococcus glycinophilus.J. Biol. Chem. 241 (1966) 197–205PubMedGoogle Scholar
  20. Kølvraa, S., Rasmussen, K. and Brandt, N. J.d-Glyceric acidemia: Biochemical studies of a new syndrome.Pediatr. Res. 10 (1976) 825–830PubMedGoogle Scholar
  21. Motokawa, Y. and Kikuchi, G. Glycine metabolism by rat liver mitochondria. Reconstitution of the reversible glycine cleavage system with partially purified protein components.Arch. Biochem. Biophys. 164 (1974) 624–633PubMedGoogle Scholar
  22. Motokawa, Y., Kikuchi, G., Narisawa, K. and Arakawa, T. Reduced level of glycine cleavage system in the liver of hyperglycinemia patients.Clin. Chim. Acta 79 (1977) 173–181PubMedGoogle Scholar
  23. Nyhan, W. L. Nonketotic hyperglycinemia. In Stanbury, J., Wyngaarden, J. and Frederickson, D. (eds.)The Metabolic Basis of Inherited Disease, 5th ed., McGraw-Hill, New York, 1982, in press.Google Scholar
  24. Nyhan, W. L. and Childs, B. Hyperglycinemia. V. The miscible pool and turnover rate of glycine and the formation of serine.J. Clin. Invest. 43 (1964) 2404–2409Google Scholar
  25. Nyhan, W. L., Borden, M. and Childs, B. Idiopathic hyperglycinemia, a new disorder of amino acid metabolism. II. The concentrations of other amino acids in the plasma and their modification by the administration of leucine.Pediatrics 27 (1961) 539–550PubMedGoogle Scholar
  26. Nyhan, W. L., Yujnovsky, A. O. and Wehr, R. F. Amino acids and cell growth. In Cheek, C. B. (ed.)Human Growth. Body Composition, Cell Growth, Energy, and Intelligence. Lea and Febiger, Philadelphia, 1968, pp. 417–423Google Scholar
  27. Perry, T. L., Urquhart, N. and Hansen, S. Studies of the glycine cleavage enzyme system in brain from infants with glycine encephalopathy.Pediatr. Res. 11 (1977) 1192–1197PubMedGoogle Scholar
  28. Perry, T. L., Urquhart, N., Maclean, J., Evans, M. E., Hansen, S., Davidson, A. G. F., Applegarth, D. A., MacLeod, P. J. and Lock, J. E. Nonketotic hyperglycinemia.N. Engl. J. Med. 292 (1975) 1269–1273PubMedGoogle Scholar
  29. Rampini, S., Vischer, D., Curtius, H. C., Anders, P. W., Tancredi, F., Frishknecht, W. and Prader, A. Hereditäre Hyperglycinämie: Klinisches Bild und Bestimung von Glyoxylsäure in Urin bei je einem Patienten mit der acidotischen und der nichtacidotischen Form.Helv. Paediatr. Acta 22 (1967) 135–159PubMedGoogle Scholar
  30. Ratner, S., Rittenberg, D., Keston, A. S. and Schoenheimer, R. Studies in Protein Metabolism. XIV. The chemical interaction of dietary glycine and body proteins in rats.J. Biol. Chem. 134 (1940) 665–676Google Scholar
  31. Richert, D. A., Amberg, R. and Wilson, M. Metabolism of glycine by avian liver.J. Biol. Chem. 237 (1962) 99–103PubMedGoogle Scholar
  32. Sagers, R. D. and Gunsalus, I. C. Intermediary metabolism ofDiplococcus glycinophilus. I. Glycine cleavage and one-carbon interconversions.J. Bacteriol. (1961) 541–549Google Scholar
  33. Sakami, W. The conversion of glycine into serine in the intact rat.J. Biol. Chem. 178 (1949) 519–520Google Scholar
  34. Stein, W. H. A chromatographic investigation of the amino acid constituents of normal urine.J. Biol. Chem. 201 (1953) 45–58PubMedGoogle Scholar
  35. Sweetman, L., Nyhan, W. L., Klein, P. D. and Szcaepanik, P. A. Glycine-1,2-13C in the investigation of children with inborn errors of metabolism. In Klein, P. D. and Peterson, S. V. (eds.),Proc. 1st Int. Conf. on Stable Isotopes in Chemistry, Biology, and Medicine, Argonne Natl. Laboratory, Argonne, IL, May 9–11, 1973, U.S. Atoic Energy Comm., Natl. Tech. Information Service, U.S. Dept. of Commerce, Springfield, VA, 1973, pp. 404–409Google Scholar
  36. Tada, K., Corbeel, L. M., Eckels, R. and Eggermont, E. A block in glycine cleavage reaction as a common mechanism in ketotic and nonketotic hyperglycinemia.Pediatr. Res. 8 (1974) 721–723PubMedGoogle Scholar
  37. Tada, K., Narisawa, K., Yoshida, T., Konno, T., Yokoyama, Y., Nakagawa, H., Tanno, K., Mochizuki, K. and Arakawa, T. Hyperglycinemia: A defect in glycine cleavage reaction.Tohoku J. Exp. Med. 98 (1969) 289–296PubMedGoogle Scholar
  38. Trauner, D. A., Page, T., Greco, C., Sweetman, L., Kulovich, S. and Nyhan, W. L. Progressive neurodegenerative disorder in a patient with nonketotic hyperglycinemia.J. Pediatr. 98 (1981) 272–275PubMedGoogle Scholar
  39. Wada, Y., Tada, K., Takada, G., Omura, K., Yoshida, T., Kuniya, T., Aoyama, T., Hakui, T. and Harada, S. Hyperglycinemia associated with hyperammonemia; in vitro glycine cleavage in liver.Pediatr. Res. 6 (1972) 622–625PubMedGoogle Scholar
  40. Winnick, T., Moring-Clafsson, I. and Greenberg, D. M. Distribution of radioactive carbon among certain amino acids of liver homogenate protein, following uptake experiments with labeled glycine.J. Biol. Chem. 175 (1948) 127–132Google Scholar
  41. Yoshida, T. and Kikuchi, G. Major pathways of glycine and serine catabolism in rat liver.Arch. Biochem. Biophys. 139 (1970) 380–392PubMedGoogle Scholar
  42. Yoshida, T. and Kikuchi, G. Comparative study on major pathways of glycine and serine catabolism in vertebrate livers.J. Biochem. 72 (1972) 1503–1516PubMedGoogle Scholar

Copyright information

© SSIEM and MTP Press Limited 1982

Authors and Affiliations

  • W. L. Nyhan
    • 1
  1. 1.Department of Pediatrics, M-009University of California San DiegoLa JollaUSA

Personalised recommendations