Journal of Inherited Metabolic Disease

, Volume 8, Issue 4, pp 169–173 | Cite as

Biochemical observations on a case of hepatic fructose-1,6-diphosphatase deficiency

  • F. A. Hommes
  • R. Campbell
  • C. Steinhart
  • R. A. Roesel
  • F. Bowyer


A case of hepatic fructose-1,6-diphosphatase deficiency is described. She presented with congenital bilateral cataracts, failure to thrive, hypoglycaemia and hyperlactacidaemia. A liver biopsy revealed normal levels of gluconeogenic enzymes except fructose-1,6-diphosphatase which was present at 30% of the level of the lower control values. The residual activity had a normal affinity for fructose-1,6-diphosphate, a decreased sensitivity for inhibition by fructose-2,6-diphosphate and an increased resistance toward conversion to the AMP-insensitive form of the enzyme. As a result of this mutation, the residual FDPase will always be maintained in the AMP-inhibited form.


Public Health Internal Medicine Normal Level Metabolic Disease Cataract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballard, T. J. and Hanson, R. W. Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver.Biochem. J. 104 (1967) 836–841Google Scholar
  2. Bergmeyer, H. U.Methods of Enzymatic Analysis, Verlag Chemie, Weinheim/Bergstr., 1983Google Scholar
  3. Deter, R. L. and DeDuve, C. Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes.J. Cell Biol. 33 (1967) 437–449PubMedGoogle Scholar
  4. Dzugaj, A. and Kochman, L. Purification of human liver fructose-1,6-diphosphatase.Biochim. Biophys. Acta 614 (1980) 407–412PubMedGoogle Scholar
  5. Gitzelmann, R., Steinmann, B. and Van den Berghe, G. Essential fructosuria, hereditary fructose intolerance, and fructose-1,6-diphosphatase deficiency. In Stanbury, J. B., Wyngaarden, J. B., Frederickson, D. S., Goldstein, J. S. an Brown, M. S. (eds.)The Metabolic Basis of Inherited Disease, McGraw-Hill, New York, 1983, pp. 118–140Google Scholar
  6. Goodman, S. I. and Markey, S. P. Diagnosis of organic acidemias by gas-chromatography-mass spectrometry. InLaboratory and Research. Methods in Biology and Medicine, Vol. 6, Alan R. Liss, New York, 1981Google Scholar
  7. Hall, W. K., Roesel, R. A., Blankenship, P. R. and Coryell, M. E. Determination of urinary organic acids as their butyl esters by gas chromatography.Fed. Proc. 43 (1984) 822Google Scholar
  8. Hers, H. G. and Van Schaftingen, E. Fructose-2,6-diphosphate, 2 years after its discovery.Biochem. J. 206 (1982) 1–12PubMedGoogle Scholar
  9. Hommes, F. A., Schryver, J. and Dias, Th. Pyruvate carboxylase deficiency, studies on patients and an animal model system. In Burman, D., Holton, J. B. and Pennock, C. A. (eds.)Inherited Disorders of Carbohydrate Metabolism, MTP Press, Lancaster, 1980, pp. 269–286Google Scholar
  10. Horecker, B. L., MacGregor, J. S. and Pontremoli, S. In Kagevama, N., Nakamura, K., Oshima, T. and Uchida, T. (eds.)Science and Scientists, Japan Scientific Societies, Tokyo, 1981, pp. 107–117Google Scholar
  11. Horecker, B. L., Melloni, E. and Pontremoli, S. Fructose-1,6-biphosphatase: properties of the neutral enzyme and its modification by proteolytic enzymes.Adv. Enzymol. 42 (1975) 193–226PubMedGoogle Scholar
  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193 (1951) 265–275PubMedGoogle Scholar
  13. Marcus, F., Edelstein, I., Saidel, L. J., Keim, P. S. and Heinrikson, R. L. The covalent structure of pig kidney fructose-1,6-biphosphatase: sequence of the 60-residue NH2-terminal pepetide produced by digestion with subtilysin.Arch. Biochem. Biophys. 209 (1981) 687–696PubMedGoogle Scholar
  14. Melloni, E., Pontremoli, S., Salamino, F., Sparatore, B., Michette, M. and Horecker, B. L. Characterization of three rabbit liver lysosomal proteinases with fructose-1,6-biphosphatase converting enzyme activity.Arch. Biochem. Biophys. 208 (1981) 175–183PubMedGoogle Scholar
  15. Newsholme, E. A. Some properties of fructose-1,6-diphosphatase of rat liver.Biochem. J. 89 (1963) 38PGoogle Scholar
  16. Pontremoli, S., Accassi, A., Melloni, E., Schiavo, E., Del Flora, A. and Horecker, B. L. Transformation of neutral to alkaline fructose-1,6-biphosphatase. Converting enzyme activity in the large-particle fraction from rabbit liver.Arch. Biochem. Biophys. 164 (1974) 716–721PubMedGoogle Scholar
  17. Pontremoli, S., Melloni, E., Del Flora, A., Accassi, A., Balestrero, F., Tsolas, O., Horecker, B. L. and Poole, B. Evidence for the selective release of lysosomal proteinases in fasted rabbits.Biochimie 58 (1976) 149–154PubMedGoogle Scholar
  18. Pontremoli, S., Melloni, E., Del Flora, A. and Horecker, B. L. Conversion of neutral to alkaline liver fructose-1,6-biphosphatase: changes in molecular properties of the enzyme.Proc. Natl. Acad. Sci. USA 70 (1973) 661–664PubMedGoogle Scholar
  19. Schryver, J. and Hommes, F. A. Activity of fructose-1,6-diphosphatase in human leukocytes.N. Engl. J. Med. 292 (1975) 1298–1299Google Scholar
  20. Schworer, C. M. and Mortimore, G. E. Glucagon-induced autophagy and proteolysis in rat liver: Mediation by selective deprivation of intracellular amino acids.Proc. Natl. Acad. Sci. USA 76 (1979) 3169–3173PubMedGoogle Scholar
  21. Seitz, H. J., Muller, M. J., Krone, W. and Tarnowski, W. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding.Arch. Biochem. Biophys. 183 (1977) 647–663PubMedGoogle Scholar
  22. Steinmann, B. and Gitzelmann, R. The diagnosis of hereditary fructose intolerance.Helv. Paediatr. Acta 36 (1981) 297–303PubMedGoogle Scholar
  23. Tejwani, G. A. Regulation of fructose biphosphatase activity.Adv. Enzymol. 54 (1983) 121–194PubMedGoogle Scholar
  24. Van Schaftingen, E. and Hers, H. G. Inhibition of fructose-1,6-biphosphatase by fructose-2,6-biphosphate.Proc. Natl. Acad. Sci. USA 78 (1981) 2861–2863PubMedGoogle Scholar
  25. Vita, A., Kido, H., Pontremoli, S. and Horecker, B. L. Inhibition of rabbit liver fructose-1,6-biphosphatase by AMP. Effect of temperature and physiological concentrations of cations and anions.Arch. Biochem. Biophys. 209 (1981) 598–605PubMedGoogle Scholar

Copyright information

© SSIEM and MTP Press Limited 1985

Authors and Affiliations

  • F. A. Hommes
    • 1
    • 4
  • R. Campbell
    • 2
  • C. Steinhart
    • 3
  • R. A. Roesel
    • 1
    • 4
  • F. Bowyer
    • 3
    • 5
  1. 1.Department of Cell and Molecular BiologyMedical College of GeorgiaAugustaUSA
  2. 2.Section of Pediatric Neurology, Department of NeurologyMedical College of GeorgiaAugustaUSA
  3. 3.Departments of Pediatrics and SurgeryMedical College of GeorgiaAustaUSA
  4. 4.Gracewood State School and HospitalGracewoodUSA
  5. 5.Department of Pediatrics, Medical Center of Central GeorgiaMaconUSA

Personalised recommendations