Zeitschrift für allgemeine Wissenschaftstheorie

, Volume 17, Issue 2, pp 265–294 | Cite as

Benennung und Identität in der Sprache der Physik

  • Peter Mittelstaedt
Aufsätze

Summary

The author investigates which methods of naming objects are possible in the language of physics on the basis of the real physical conditions and to which extend objects thereby can be identified. It is shown that in the language of classical physics naming by designation is always possible. But this implies only the temporal identity of objects, not the “trans — world” — identity, which is important for modalities. In the language of quantum physics naming by designation is no longer applicable to individuals but only to classes of equivalent objects. And for these classes temporal identity as well as the “trans — world” — identity can be produced, which means that an adequate semantics can be specified for the concept of possibility necessary in this language.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. [1]
    Mittelstaedt, P., „Wahrheit, Wirklichkeit und Logik in der Sprache der Physik“, Z. f. allgem. Wissenschaftstheorie, XIV/1 (1983), 24–45.CrossRefGoogle Scholar
  2. [2]
    Stachow, E.-W., „Logical foundation of Quantum Mechanics”, Intern. Jour. of Theoretical Physics,19, (1980) 251–304CrossRefGoogle Scholar
  3. [3]
    Mittelstaedt, P., „Quantum Logic“, D. Reidel Publ. Co., Dordrecht, Holland 1978CrossRefGoogle Scholar
  4. [4]
    Lorenzen, P. und O. Schwemmer, „Konstruktive Logik, Ethik und Wissenschaftstheorie“, Bibliographisches Institut, Mannheim, 1975Google Scholar
  5. [5] a)
    , „The Modal Logic of Quantum Logic“, Journ. of Philosophical Logic,8 (1979) 479–504CrossRefGoogle Scholar
  6. [5] b)
    , „The dialogic approach to modalities in the language of quantum physics“, in: Current issues in quantum logic, E. G. Beltrametti and B. C. van Fraassen, eds., Plenum Publishing Corporation, New York 1981, 259–281CrossRefGoogle Scholar
  7. [6]
    Kripke, S. A., „A completeness theorem in modal logic“, Journ. of symbolic Logic,24 (1959), 1–14CrossRefGoogle Scholar
  8. [7]
    Leibniz, G. W., Neue Abhandlungen über den menschlichen Verstand, Vol. 1, Kap. XXVII, Hrsg. H. v. Engelhardt u. H. H. Holz, Insel-Verlag, Frankfurt, 1961Google Scholar
  9. [8]
    Frege, G., „Über Sinn und Bedeutung“, in: Gottlob Frege, Funktion, Begriff, Bedeutung, Hrsg. G. Patzig, Vandenhoek u. Ruprecht, Göttingen, 1966Google Scholar
  10. [9]
    Russell, B., „On denoting“, Mind14, (1905) 479–493CrossRefGoogle Scholar
  11. [10]
    Wittgenstein, L., Tractatus Logico-philosophicus, in: Schriften 1, Frankfurt 1960Google Scholar
  12. [11]
    Carnap, R., Meaning and Necessity, Ch. III, The University of Chicago Press, Chicago, 1956Google Scholar
  13. [12]
    Quine, W. V., „Designation and existence“, J. Phil.36 (1939)Google Scholar
  14. [13]
    Quine, W. V., „Notes on existence and necessity“, J. Phil.40 (1943)Google Scholar
  15. [14]
    Kripke, S. A., Naming and Necessity, 2nd ed., Basil Blackwell Publ. Oxford, 1980Google Scholar
  16. [15]
    Levy-Leblond, J.-M. „Galilei Group and Nonrelativistic Quantum Mechanics“, J. Math. Phys.4, (1963) 776CrossRefGoogle Scholar
  17. [16]
    Piron, C., Foundations of Quantum Mechanics, W. A. Benjamin Inc., Reading, Mass. 1976Google Scholar
  18. [17]
    Mittelstaedt, P., Klassische Mechanik, Kap. III, Bibliographisches Institut Mannheim 1970Google Scholar
  19. [18]
    Schmadel, L. D., „Die Identität A899OF = (1) Ceves“, Sterne und Weltraum21 (1982), 114Google Scholar
  20. [19]
    Jauch, J. M., Foundations of Quantum Mechanics, Addison Wesley Publ. Co., Reading, Mass. 1968Google Scholar
  21. [20]
    Mittelstaedt, P., Quantum logic and relativistic space-time, in: Quantum theory and the structure of space and time, Eds. L. Castell and C. F. v. Weizsäcker, Hauser-Verlag, München 1983Google Scholar
  22. [21] a)
    , „Quantum logic and physical modalities“, J. Phil. Logic6, (1977), 391–404CrossRefGoogle Scholar
  23. [21] b)
    , „Some metalogical pathologies of quantum logic“, in: Beltrametti, E. and Bas C. van Fraassen, Current Issues in Quantum Logic, Plenum Press, New York 1984Google Scholar
  24. [22]
    Burghardt, F. J., „Modalities and quantum mechanics“, Int. Journ. of Theoretical Physics, im Erscheinen.Google Scholar
  25. [23]
    Stachow, E.-W., „Der quantenlogische Warscheinlichkeitskalkül“, in: Grundlagenprobleme der modernen Physik, Hrsg. J. Nitsch, J. Pfarr u. E.-W. Stachow, Bibliographisches Institut, Mannheim 1981Google Scholar
  26. [24]
    v. Weizsäcker, C. F., „Probability and Quantum Mechanics“, Britisch Journal of the Philosophy of Science24, (1973), 321–337CrossRefGoogle Scholar

Copyright information

© Franz Steiner Verlag Wiesbaden GmbH 1986

Authors and Affiliations

  • Peter Mittelstaedt
    • 1
  1. 1.Institut für Theoretische Physik der Universität zu KölnKöln 41

Personalised recommendations