Skip to main content
Log in

The efficacy of 9-cis retinoic acid in experimental models of cancer

  • Tumor growth pathways and their inhibition
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

9-cis retinoic acid (9-cis RA) is a retinoid receptor pan-agonist that binds with high affinity to both retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Using a variety ofin vivo andin vitro cancer models, we present experimental data that 9-cis RA has activity as a potential chemotherapeutic agent. Treatment of the human promyelocytic leukemia cell line HL-60 with 9-cis RA decreases cell proliferation, increases cell differentiation, and increases apoptosis. Induction of apoptosis correlates with an increase in tissue transglutaminase (type II) activity.In vivo, 9-cis RA induces complete tumor regression of an early passage human lip squamous cell carcinoma xenograft. Finally, 9-cis RA inhibits the anchorage-independent growth of the human breast cancer cell lines MCF-7 and LY2 (an antiestrogen-resistant MCF-7 variant). Transient co-transfection assays indicate that 9-cis RA inhibits estrogen receptor transcription of an ERE-tk-LUC reporter through RAR or RXR receptors. These data suggest that retinoid receptors can antagonize estrogen-dependent transcription and provides one possible mechanism for the inhibition of cell growth by 9-cis RA in breast cancer cell lines. In summary, these findings present evidence that 9-cis RA has a wide range of activities in human cancer models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Breitman T, Selonic S, Collins S: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci 77: 2936–2940, 1980

    PubMed  Google Scholar 

  2. Sporn M, Roberts A: Role of retinoids in differentiation and carcinogenesis. J Natl Cancer Inst 73:1381–1387, 1984

    PubMed  Google Scholar 

  3. Martin S, Bradley J, Cotter T: HL-60 cells induced to differentiate towards neutrophils subsequently die via apoptosis. Clin Exp Immunol 79:448–453, 1990

    PubMed  Google Scholar 

  4. Evans R: The steroid and thyroid hormone receptor superfamily. Science 240:889–895, 1988

    PubMed  Google Scholar 

  5. Leid M, Kastner P, Chambon P: Multiplicity generates diversity in the retinoic acid signaling pathways. TIBS 17, 427, October 1992

    PubMed  Google Scholar 

  6. Mangelsdorf DJ, Umesono K, Evans RM: The retinoid receptors.In: Sporn MB, Roberts AB, Goodman DS (eds) The Retinoids: Biology, Chemistry and Medicine (2d ed.). Raven Press, New York, 1994, pp 319–349

    Google Scholar 

  7. Pfahl M: Signal transduction by retinoid receptors. Skin Pharmacol 6 (Suppl 1):8–16, 1993

    PubMed  Google Scholar 

  8. Giguere V: Retinoic acid receptors and cellular retinoid binding proteins: complex interplay in retinoid signaling. Endocrine Revs 15(1):61–79, 1994

    Google Scholar 

  9. Petkovich M, Brand NJ, Krust A, Chambon P: A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 330:444–450, 1987

    PubMed  Google Scholar 

  10. Giguere V, Yang N, Segui P, Evans RM: Identification of a new class of steroid hormone receptors. Nature 331:91–94, 1988

    PubMed  Google Scholar 

  11. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C: 9-cis-retinoic acid is a high-affinity ligand for the retinoid X receptor. Cell 68:397–406, 1992

    PubMed  Google Scholar 

  12. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Kratzeisen C, Rosenberger M, Lovey A, Grippo JF: 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature 355:359–361, 1992

    PubMed  Google Scholar 

  13. Allegretto EA, McClurg MR, Lazarchik SB, Clemm DL, Kerner SA, Elgort MG, Boehm MF, White SK, Pike JW, Heyman RA: Transactivation properties of retinoic acid and retinoid X receptors in mammalian cells and yeast. J Biol Chem 268:26625–26633, 1993

    PubMed  Google Scholar 

  14. Allenby G, Janocha R, Kazmer S, Speck J, Grippo JF, Levin AA: Binding of 9-cis-retinoic acid and all-trans-retinoic acid to retinoic acid receptors α, β, and γ. J Biol Chem 269:16689–16695, 1994

    PubMed  Google Scholar 

  15. Huang ME, Ye YC, Chen SR, Chai JR, Lu JX, Zhoa L, Gu HT, Wang ZY: Use of all-trans-retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72:567–572, 1988

    PubMed  Google Scholar 

  16. Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM, Li C, Wang W, Zu WY, Yao XZ, Ling BJ: A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78: 1413–1419, 1991

    PubMed  Google Scholar 

  17. Castaigne S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L: All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76:1704–1709, 1990

    PubMed  Google Scholar 

  18. Chomienne C, Ballerini P, Balitrand N, Amar M, Bernard JF, Boivin P, Daniel MT, Berger R, Castaigne S, Degos L: Retinoid acid therapy for promyelocytic leukemia. Lancet ii:746–747, 1989

    Google Scholar 

  19. Warrell RP, Frankel SR, Miller WH Jr, Scheinberg DA, Itri LM, Hittelman WN, Vyas R, Andreeff M, Tafuri A, Jakubowski A, Gabrilove J, Gordon MS, Dmitrovsky E: Differentiation therapy of acute promyelocytic leukemia with tretinoin (alltrans-retinoic acid). N Engl J Med 324:1385–1393, 1991

    PubMed  Google Scholar 

  20. Smith MA, Parkinson DR, Cheson BD, Friedman MA: Retinoids in cancer therapy. J Clin Oncol 5:839–864, 1992

    Google Scholar 

  21. Lippman SM, Kavanagh JJ, Paredes-Espinoza M, Delgadillo-Madrueno F, Paredes-Casillas P, Hong WK, Holdener E, Krakoff I: 13-cis retinoic acid plus interferon alpha-a: Highly active systemic therapy for squamous cell carcinoma of the cervix. J Natl Cancer Inst 84:241–245, 1992

    PubMed  Google Scholar 

  22. Lippman SM, Parkinson DR, Itri LM, Weber RS, Schantz SP, Ota DM, Schusterman MA, Krakoff IH, Gutterman JU, Hong WK: 13-cis-retinoic acid and interferon alpha-a: Effective combination therapy for advanced squamous cell carcinoma of the skin. J Natl Cancer Inst 84:235–241, 1992

    PubMed  Google Scholar 

  23. Hong WK, Endicott J, Itri LM, Doos W, Batsakis JG, Bell R, Fofonoff S, Byers R, Atkinson EN, Vaughan C, Toth BB, Kramer A, Dimery IW, Skipper P, Strong S: 13-cis-retinoic acid in the treatment of oral leukoplakia. N Engl J Med 315:1501–1505, 1986

    PubMed  Google Scholar 

  24. Hong WK, Lippman SM, Itri L, Karp D, Lee JS, Byers RM, Schantz SP, Kramer AM, Lotan R, Peters LJ, Dimery IW, Brown BW, Goepfert H: Prevention of second primary tumors with isotretinoin in squamous cell carcinoma of the head and neck. N Engl J Med 323:795–801, 1990

    PubMed  Google Scholar 

  25. Williams D, Gorski J: Equilibrium binding of estradiol by uterine cell suspensions and whole uteriin vitro. Biochemistry 13:5537–5542, 1974

    PubMed  Google Scholar 

  26. Shrivastav S, Bonar RA, Stone KR, Paulson DF: Anin vitro assay procedure to test chemotherapeutic drugs on cells from human solid tumors. Cancer Res 40: 4438–4442, 1980

    PubMed  Google Scholar 

  27. Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63, 1983

    PubMed  Google Scholar 

  28. Davies PJ, Murtaugh MP, Moore WT, Johnson GS, Lucas D: Induction of tissue transglutaminase in mouse peritoneal macrophages. J Biol Chem 260:5166, 1985

    PubMed  Google Scholar 

  29. Gentile V, Thomazy V, Piacentini M, Fesus L, Davies PJA: Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol 119:463–474, 1992

    PubMed  Google Scholar 

  30. Lippman SM, Meyskens FL Jr: Results of the use of Vitamin A and retinoids in cutaneous malignancies. Pharmacol Ther 40:107–122, 1989

    PubMed  Google Scholar 

  31. Poddar S, Hong WK, Thacher SM, Lotan R: Retinoic acid suppression of squamous differentiation in human head and neck squamous carcinoma cells. Int J Cancer 48:239–247, 1991

    PubMed  Google Scholar 

  32. Krause CJ, Carey TE, Russell WO, Hurbis C, McClatchey KD, Regezi JA: Human squamous cell carcinoma, establishment of new permanent cell lines. Arch Otolaryngol 107:703–710, 1981

    PubMed  Google Scholar 

  33. Giovanella BC, Stehlin JS, Williams LJ, Lee S-S, Shepard RC: Heterotransplantation of human cancers into "nude" mice: A model system for human cancer chemotherapy. Cancer 42:2269–2281, 1978

    PubMed  Google Scholar 

  34. Sharkey FE, Fogh J: Considerations in the use of nude mice for cancer research. Cancer Met Rev 3:341–360, 1984

    Google Scholar 

  35. Gottardis MM, Torri J, Evans SRT, Lippman ME, Thompson EW: Matrigel-dependent xenografting of primary human colon carcinomas in athymic mice [abstract 210]. Proc Amer Assoc Cancer Res 32:35, 1991

    Google Scholar 

  36. Friedman R Kibbey MC, Royce LS, Zain M, Sweeney TM, Jicha DL, Yannelli JR, Martin GR, Kleinman HK: Basement membrane (matrigel) enhances both the incidence and growth of subcutaneously injected human and murine cells. J Natl Cancer Inst 83:769–774, 1991

    PubMed  Google Scholar 

  37. Jun SH, Thompson EW, Gottardis M, Torri J, Yamamura K, Kibbey MC, Kim WH, Kleinman HK: Laminin adhesion-selected primary human colon cancer cells are more tumorigenic than the parental non adherent cells. Int J Oncol 4:55–60, 1994

    Google Scholar 

  38. Moon RC, Itri LM: Retinoids and cancer.In: Sporn MB, Goodman DS, Roberts AB (eds) The Retinoids, Vol. 2. Academic Press, New York, 1984, pp 327–371

    Google Scholar 

  39. Moon RC, Mehta RG: Cancer chemoprevention by retinoids: animal models. Methods Enzymol 190: 395–406, 1990

    PubMed  Google Scholar 

  40. Moon RC, Grubbs CJ, Sporn MB, Goodman DG: Retinyl-acetate inhibits mammary carcinogenesis induced by N-methyl-N-nitrosourea. Nature 267: 620–621, 1977

    PubMed  Google Scholar 

  41. Moon RC, Thompson HJ, Becci PJ, Grubbs CJ, Gander RJ, Newton DL, Smith JM, Phillips SL, Henderson WR, Mullen LT, Brown CC, Sporn MB: N-(4-hydroxyphenyl)retinamide, a new retinoid for the treatment of breast cancer in the rat. Cancer Res 39: 1339–1346 1979

    PubMed  Google Scholar 

  42. McCormick DL, Mehta RG, Thompson CA, Dinger N, Caldwell JA, Moon RC: Enhanced inhibition of mammary carcinogenesis by combination N-(4-hydroxyphenyl)retinamide and ovariectomy. Cancer Res 42:508–512, 1982

    PubMed  Google Scholar 

  43. Ratko TA, Detrisac DJ, Dinger NM, Thomas CF, Kelloff GJ, Moon RC: Chemopreventative efficacy of combined retinoid and tamoxifen treatment following surgical excision of a primary mammary cancer in female rats. Cancer Res 49:4472–4476, 1989

    PubMed  Google Scholar 

  44. Anzano MA, Byers SW, Smith JM, Peer CW, Mullen LT, Brown CC, Roberts AB, Sporn MB: Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res 54:4614–4617, 1994

    PubMed  Google Scholar 

  45. Lotan R: Differential susceptibilities of human melanoma and breast carcinoma to retinoic acidinduced growth inhibition. Cancer Res 39:1014–1019, 1979

    PubMed  Google Scholar 

  46. Lacroix A, Lippman ME: Binding of retinoids to human breast cancer cell lines and their effects on cells in tissue culture. J Clin Invest 65:586–591, 1980

    PubMed  Google Scholar 

  47. Fontana JA: Interaction of retinoids and tamoxifen on the inhibition of human mammary carcinoma cell proliferation. Exp Cell Biol 55:136–144, 1987

    PubMed  Google Scholar 

  48. Butler WB, Fontana JA: Response to retinoic acid of tamoxifen sensitive and resistant sublines of human breast cancer cell line MCF-7. Cancer Res 52:6164–6167, 1992

    PubMed  Google Scholar 

  49. Fontana JA, Misksis G, Miranda DM, Durham JP: Inhibition of human mammary carcinoma cell proliferation by retinoids and intracellular cAMP-elevating compounds. J Natl Cancer Inst 78:1107–1112, 1987

    PubMed  Google Scholar 

  50. Koga, M, Sutherland RL: Retinoic acid acts synergistically with 1,25-dihydroxyvitamin D3 or antiestrogen to inhibit T47-D human breast cancer cell proliferation. J Steroid Biochem Mol Biol 39:455–460, 1991

    PubMed  Google Scholar 

  51. Fontana JA, Nervi C, Shao ZM, Jetten AM: Retinoid antagonism of estrogen-responsive transforming growth factor alpha and pS2 expression in breast carcinoma cells. Cancer Res 52:3938–3945, 1992

    PubMed  Google Scholar 

  52. Clark CL, Roman SD, Graham J, Koga M, Sutherland RL: Progesterone receptor regulation by retinoic acid in the human breast cancer cell line T47-D. J Biol Chem 265:12694–12700, 1990

    PubMed  Google Scholar 

  53. Dermirpence E, Pons M, Balaguer Gagne D: Study of an antiestrogenic effect of retinoic acid in MCF-7 cells. Biochem Biophys Res Commun 183:100–106, 1992

    PubMed  Google Scholar 

  54. McDonnell DP, Goldman ME: RU486 exerts antiestrogenic activities through a novel progesterone receptor A form-mediated mechanism. J Biol Chem 16:11945–11949, 1994.

    Google Scholar 

  55. Zugmaier G, Lippman ME, Wellstein A: Inhibition by pentosanpolysulfate (PPS) of heparin-binding growth factors released from tumor cells and blockage by PPS of tumor growth in animals. J Natl Cancer Inst 22: 1716–1724, 1992

    Google Scholar 

  56. Frey JR, Peck R, Bollag W: Antiproliferative activity of retinoids, interferon α and their combination in five human transformed cell lines. Cancer Letters 57:223–227, 1991

    PubMed  Google Scholar 

  57. Segars JH, Marks MS, Hirshfeld S, Driggers PH, Martinez E, Grippo JF, Brown M, Wahli W, Ozato K: Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways. Mol Cell Biol 13:2258–2268, 1993

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gottardis, M.M., Lamph, W.W., Shalinsky, D.R. et al. The efficacy of 9-cis retinoic acid in experimental models of cancer. Breast Cancer Res Tr 38, 85–96 (1996). https://doi.org/10.1007/BF01803787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01803787

Key words

Navigation