Skip to main content
Log in

Simulation of the ice age atmosphere — January and July means

  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Eine Simulation des Zustands der eiszeitlichen Atmosphäre (18000 Jahre vor heute) wird vorgestellt. Das T21-Modell (allgemeines Zirkulationsmodell der Atmosphäre), entwickelt am Europäischen Zentrum für Mittelfrist-Wettervorhersage, wurde zur Berechnung von sechs Jahresgängen verwendet. Die Ergebnisse der oberflächennahen Klimatologie (2 m-Temperatur, 10 m-Wind und Niederschlag) werden präsentiert als Mittel über die letzten fünf Modelljahre. Die Darstellung ist eingeschränkt auf Januar- und Julimittel, um die eiszeitlichen Änderungen im Sommer und Winter deutlich zu machen. Die Antwort des Modells auf die eiszeitlichen Randbedingungen stimmt recht gut überein mit paläogeologischen Landdaten und mit anderen Simulationsrechnungen. Obgleich die Klimaunterschiede in der eiszeitlichen und der heutigen Modellatmosphäre statistisch signifikant sind, wurde die Grundstruktur der atmosphärischen Zirkulation vom T21-Modell nur wenig verändert.

Abstract

A simulation of the atmospheric state under ice age conditions (18,000 years before present) is presented. The T21 Atmospheric General Circulation Model (AGCM), originally developed at the European Centre for Medium-Range Weather Forecasts, was used for the calculation of six annual cycles. Results of the near-surface climatology (2 m-temperature, 10 m-wind, and precipitation), averaged over the last five model years, are presented. The presentation is restricted to January and July means in order to demonstrate the glacial changes in summer and winter. The model's response to ice age boundary conditions was quite consistent with paleogeological data on land and with AGCM experiments of other studies. Although the differences between the mean climate states of the model atmosphere under glacial and modern boundary conditions were statistically significant, the basic structure of the simulated atmospheric circulation was not altered substantially.

Résumé

Cette note présente une simulation de l'état de l'atmosphère dans les conditions de l'âge glaciaire, il y a 18.000 ans. Le calcul de 6 cycles annuels a été effectué au moyen du modèle T 21 de la circulation atmosphérique générale développé au Centre Européen de prévision du temps à moyen terme. Les éléments du climat proche de la surface (température à 2 m, vent à 10 m, précipitations) sont présentés en moyenne des cinq dernières années du modèle. Ces éléments sont limités aux moyennes de janvier et de juillet, de manière à mettre en évidence les changements hiver/été. La réponse du modèle aux conditions aux limites de l'âge glaciaire est en bon accord avec les données paléontologiques de terrain ainsi qu'avec d'autres calculs de simulation. Bien qu'il existe d'importantes différences climatiques entre les modèles d'atmosphère de l'âge glaciaire et d'aujourd'hui, la structure de base de la circulation atmosphérique du modèle T 21 est peu modifiée.

Краткое содержание

Представлена модель состояния атмосферы во время ледникового периода, 18000 лет тому назад. Модель Т 21 = модел ь общей циркуляции атмосферы, = разработа нную Европейским Метереологическим Ц ентром для предсказа ния погоды на отрезок вре мени средней продолжительности, п рименили для вычисле ния температуры за после дние 6 лет. Результаты наблюдения за климат ом слоев атмосферы, расположенных близь поверхности Земли — 2м для температуры и 10 м дл я ветров и дождей пред ставили, как средние величины за последние 5 лет. Все те изменения а тмосферы, которые происходили в ледник овом периоде, изобраз или графически, причем дл я ясности взяли только данные середи ны января и июля. Повед ение модели на ледниковых краевых условиях хорошо согласуются с палеогеографически ми данными о материках и с другими моделями. Хотя различия в клима те ледникового перио да и сегодняшней атмосф еры по модельным опыт ам оказались существен ными, но основные пути циркуляции атмо сферы по модели Т 21 проявляют очень незн ачительные отклонен ия от таковых сегодняшн его дня.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Atkinson, B. W. (1981): Meso-scale atmospheric circulations. - Academic Press, Inc., London.

    Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S. &Lorius, C. (1987): Vostok ice core: a 160,000-year record of atmospheric CO2. - Nature,329, 408–414.

    Google Scholar 

  • Berger, A. L. (1978): Long-term variations of daily insolation and Quaternary climatic changes. - J. Atm. Sci.35, 2362–2367.

    Google Scholar 

  • Bonnefille, R., Roeland, J. C. &Guiot, J. (1990): Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. - Nature,346, 347–349.

    Google Scholar 

  • Broccoli, A. J. &Manabe, S. (1987): The influence of continental ice, atmospheric CO2, and land albedo on the climate of the last glacial maximum. - Climate Dynamics,1, 87–99.

    Google Scholar 

  • CLIMAP Project Members (1981): Seasonal reconstruction of the earth's surface at the last glacial maximum. - Geol. Soc. Amer. Chart. Ser., MC-36.

  • Crowley, T. J. (1988): Paleoclimate modelling. - From: Physically based modeling and simulation of climate and climatic change. - Part II, 883–949. Ed.: M. E. Schlesinger. Kluwer Academic Publishers.

  • Dümenil, L. &Schlese, U. (1987): Description of the general circulation model. - From: Climate simulations with the T21-model in Hamburg, Ed.: G. Fischer, Meteor. Inst. Large Scale Atmosph. Model. Rep. No. 1.

  • Duplessy, J. C. (1982): Glacial to interglacial contrasts in the Northern Indian ocean. - Nature,295, 494–498.

    Google Scholar 

  • —,Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D. &Kallel, N. (1988): Deepwater source variations during the last climate cycle and their impaction on the global deepwater circulation. - Paleocean.,3, 343–360.

    Google Scholar 

  • Frenzel, B.,Hövermann, J. &Sirocko, F. (1989): Personal communication.

  • Gates, W. L. (1976): The numerical simulation of ice age climate with a global general circulation model. - J. Atmosph. Sci.,33, 1844–1873.

    Google Scholar 

  • Jaeger, L. (1976): Monatskarten des Niederschlags für die ganze Erde. - Berichte des Deutschen Wetterdienstes,18, No. 139.

  • Janecek, T. R. &Rea, D. R. (1985): Quaternary fluctuations in the Northern Hemisphere trade winds and westerlies. - Quater. Res.,24, 150–163.

    Google Scholar 

  • Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I., Kotlyakov, V. M. &Petrov, V. M. (1987): Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160 000 years). - Nature,329, 403 -408.

    Google Scholar 

  • Kuhle, M. (1987): Subtropical mountain- and highland glaciation as Ice Age triggers and the waning of the glacial periods in the pleistocene. - Geo Journal,14, 4, 393–421.

    Google Scholar 

  • —,Herterich, K. &Calov, R. (1989): On the ice age glaciation of the Tibetan highlands and its transformation into a 3-d model. - Geo Journal,19, 2, 201–206.

    Google Scholar 

  • Kutzbach, J. E., Guetter, P. J. (1986): The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. - J. Atm. Sci.,43, 16, 1726–1759.

    Google Scholar 

  • Lautenschlager, M., Herterich, K. (1990): Atmospheric response to ice age conditions-climatology near the earth's surface. - J. Geophs. Res.,95, 22547–22557.

    Google Scholar 

  • — &Santer, B. D. (1991): Atmospheric response to a hypothetical Tibetan ice sheet.- Journal of Climate,4, 386–394.

    Google Scholar 

  • Liu, K. &Colinvaux, P. A. (1985): Forest changes in the Amazon basin during the last glacial maximum.- Nature,318, 556–557.

    Google Scholar 

  • Louis, J. F. (1984): ECMWF forecast model: physical parameterization. - ECMWF Research Department, Research manual 3.

  • Maier-Reimer, E. &Hasselmann, K. (1987): Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model. - Climate Dynamics,2, 63–90.

    Google Scholar 

  • Manabe, S., Broccoli, A. J. (1985): The influence of continental ice sheets on the climate of an Ice Age. - J. Geophys. Res.,90, D1, 2167–2190.

    Google Scholar 

  • Molina-Cruz, A. (1977): The relation of the southern trade winds to upwelling processes during the last 75000 years.- Quater. Res.,8, 324–338.

    Google Scholar 

  • Peterson, G. M., Webb III., T., Kutzbach, J. E., T. van Hammen, T., Wijmstra, T. A., Street, F. A. (1979): The Continental Record of Environment Conditions at 18000 yr. B.P.: An Initial Evaluation. - Quat. Res.,12, 47–82.

    Google Scholar 

  • Petit, J.-R., Briat, M., Royer, A. (1981): Ice age aerosol content from East Antarctic ice core samples and past wind strength. - Nature,293, 391–394.

    Google Scholar 

  • Pisias, N. G. &Rea, D. K. (1988): Late Pleistocene pleoclimatology of the central equatorial Pacific: Sea surface response to the southeast trade winds. - Paleocean.,3, 21–37.

    Google Scholar 

  • Rind, D. (1987): Components of the Age circulation. - J. Geophys. Res.92, D4, 4241–4281.

    Google Scholar 

  • — &Peteet, D. (1985): Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistant? - Quat. Res.,24, 1–22.

    Google Scholar 

  • Santer, B. D. &Wigley, T. M. L. (1990): Regional validation of means variances and spatial patterns in GCM control runs. - J. Geophs. Res.,95, D1, 829–850.

    Google Scholar 

  • Sarnthein, M. (1978): Sand deserts during glacial maximum and climatic optimum. - Nature,271, 43–46.

    Google Scholar 

  • —,Winn, K., Duplessy, J. C. &Fontugue, M. R. (1988): Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21000 years. - Paleoceanography,3, 361–399.

    Google Scholar 

  • Speth, P.,Barbulescu, M. &Ulbrich, U. (1987): Energetics of the T21-GCM. - From: Climate simulations with the T21-model in Hamburg, Ed.: G. Fischer, Meteor. Inst. Large Scale Atmosph. Model. Rep. No. 1.

  • Street-Perrott, F. A. &Harrison, S. A. (1984): Temporal variations in lake levels since 30000 yr BP — an index of the global hydrological cycle. - From: Climate processes and climate sensitivity, 118–129. Ed.: J. E. Hansen, T. Takahashi. Geophysical Monograph 29. American Geophysical Union, Washington D. C.

    Google Scholar 

  • Wigley, T. M. L. &Santer, B. D. (1990): Statistical comparison of spatial fields in model validation, perturbation and predictability experiments. - J. Geophys. Res.,95, D1, 851–865.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lautenschlager, M. Simulation of the ice age atmosphere — January and July means. Geol Rundsch 80, 513–534 (1991). https://doi.org/10.1007/BF01803684

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01803684

Keywords

Navigation