Skip to main content
Log in

Left ventricular imaging by digital subtraction angiography

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Summary

Digital radiography is a rapidly developing new approach to cardiovascular imaging that converts radiographic and fluoroscopic video images into digital format for subsequent image enhancement analysis, and storage. Left ventriculography can be performed by this method using either intravenous or low-dose intraventricular contrast administration. Advantages over standard radiography include reduced radiation and contrast medium burden, visualization of very low contrast medium concentrations, and an image format that can be directly analyzed by quantitative techniques. As these cardiac applications are developed and improved archiving is implemented, it is likely that the digital left ventriculography will replace standard cardiac angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robb GP, Steinberg I. Visualization of the chambers of the heart, pulmonary circulation, and great blood vessels in man. AJR 1938; 1: 1–17.

    Google Scholar 

  2. Frost MM, Fisher HD, Nudelman S et al. A digital video acquisition system for extraction of subvisual information in diagnostic medical imaging. Appl Opt Instrument Med, VI, Bellingham, Washington, September 25–27, 1977. Proc SPIE 1977; 127: 208–215.

    Google Scholar 

  3. Heintzen PH, Brennecke R, Bursch JH. Automated video-angiographic image analysis. IEEE Comput Cardiol 1975; 8: 55–64.

    Google Scholar 

  4. Kruger RA, Mistretta CA, Houk TL et al. Computerized fluoroscopy in real time for noninvasive visualization of the cardiovascular system. Radiology 1979; 130: 49–57.

    PubMed  Google Scholar 

  5. Wood EH, Sturm RE, Sanders JJ. Data processing in cardiovascular physiology with particular reference to roentgen videodensitometry. Mayo Clin Proc 1984; 39: 849–865.

    Google Scholar 

  6. Kruger RA, Mistretta CA, Houk TL et al. Computerized fluoroscopy techniques for intravenous study of cardiac chamber dynamics. Invest Radiol 1979; 14: 279–287.

    PubMed  Google Scholar 

  7. Kruger RA. Estimation of the diameter of an iodine concentration within blood vessels using digital radiography devices. Med Phys 1981; 8: 652–658.

    PubMed  Google Scholar 

  8. Vogel R, LeFree M, Bates E et al. Application of digital techniques to selective coronary arteriography: Use of myocardial contrast appearance time to measure coronary blood flow reserve. Amer Heart J 1984; 107: 153–164.

    PubMed  Google Scholar 

  9. Bailey NA. Video techniques for x-ray imaging and data extraction from roentgenographic and fluoroscopic presentations. Med Phys 1980; 7: 472–491.

    PubMed  Google Scholar 

  10. Kruger RA. Basic physics of computerized fluoroscopy difference imaging. In: Mistretta CA, Crummy AB, Strother CM et al., eds. Digital subtraction arteriography: An application of computerized fluoroscopy. Chicago: Year Book Medical Publishers, Inc, 1982; 16–22.

    Google Scholar 

  11. Ovitt TW, Fisher HD. Ideal configuration for intravenous digital subtraction angiography machine. Cardiovasc Intervent Radiol 1983; 6: 300–302.

    PubMed  Google Scholar 

  12. Reiderer SJ, Kruger RA. Intravenous digital subtraction: A summary of recent developments. Radiology 1983; 147: 633–638.

    PubMed  Google Scholar 

  13. Brennecke R, Bursch JH, Bogren HG et al. Digital intravenous imaging techniques in pediatric cardiology. In: Mistretta CA, Crummy AB, Strother CM et al., eds. Digital subtraction arteriography: An application of computerized fluoroscopy. Chicago: Year Book Medical Publishers, Inc, 1932; 133–141.

    Google Scholar 

  14. Vogel R, LeFree M, Foster R et al. Digital left ventriculography: Determination of the benefit from post-acquisition processing. IEEE Comput Cardol 1982; 219–222.

  15. Crummy AB. Computerized fluoroscopy: Digital subtraction for intravenous angiocardiography. AJR 1980; 135: 1131–1140.

    PubMed  Google Scholar 

  16. Zir LM, Miller SW, Dinsmore RE et al. Interobserver variability in coronary angiography. Circulation 1976; 52: 627–632.

    Google Scholar 

  17. Reiderer SJ, Enzmann DR, Hall AL et al. The application of matched filtering to x-ray exposure reduction in digital subtraction angiography: Clinical results. Radiology 1983; 146: 349–354.

    PubMed  Google Scholar 

  18. Kruger RA. A method for time domain filtering using computerized fluoroscopy. Med Phys 1981; 8: 466–469.

    PubMed  Google Scholar 

  19. Robb RA, Wood EH, Ritman EL et al. Three-dimensional reconstruction and display of the working canine heart and lungs by multiplanar x-ray scanning videodensitometry. IEEE Comput Cardiol 1974; 151–163.

  20. Ansell G, Tweedie MK, Wes CR et al. The current status of reactions to intravenous contrast media. Invest Radiol 1980; 15: S32-S39.

    PubMed  Google Scholar 

  21. Fischer HW. Hemodynamic reactions to angiographic media. Radiology 1968; 91: 66–73.

    PubMed  Google Scholar 

  22. Higgins CB. Effects of contrast materials on left ventricular function. Invest Radiol 1980; 15: S220-S231.

    PubMed  Google Scholar 

  23. Mancini GBJ, Ostrander DR, Slutsky RA et al. Intravenous vs. left ventricular injection of ionic contrast material: Hemodynamic implications for digital subtraction angiography. Amer J Cardiol 1983; 140: 425–430.

    Google Scholar 

  24. Kronenberg MW, Price RR, Smith CW et al. Evaluation of left ventricular performance using digital subtraction angiography. Amer J Cardiol 1983; 51: 837–842.

    PubMed  Google Scholar 

  25. Sasayama S, Nonogi H, Kawai C et al. Automated method for left ventricular volume measurement by cineventriculography with minimal doses of contrast medium. Amer J Cardiol 1981; 48: 746–753.

    PubMed  Google Scholar 

  26. Higgins CB, Gerber KH, Mattrey RA. Evaluation of the hemodynamic effects of intravenous administration of ionic and nonionic contrast materials. Radiology 1982; 142: 681–686.

    PubMed  Google Scholar 

  27. Mancini GBJ, Bloomquist JN, Bhargava V et al. Hemodynamic and electrocardiographic effects in man of a new nonionic contrast agent (iohexol): Advantages over standard ionic agents. Amer J Cardil 1983; 51: 1218–1222.

    Google Scholar 

  28. Mancini GBJ, Atwood JE, Bhargava E et al. Comparative effects of ionic and nonionic contrast materials on indexes of isovolumic contraction and relaxation in humans. Amer J Cardiol 1984; 53: 228–233.

    PubMed  Google Scholar 

  29. Sackett JR, Mann FA. Contrast media for digital subtraction arteriography of cerebral arteries. In: Mistretta CA, Crummy AB, Strother CM et al., eds. Digital subtraction arteriography: An application of computerized fluoroscopy. Chicago: Year Book Medical Publishers, Inc, 1982; 23–25.

    Google Scholar 

  30. Modie MT, Weinstein MA, Pavlicek W et al. Intravenous digital subtraction angiography: Peripheral versus central injection of contrast material. Radiology 1983; 147: 711–715.

    PubMed  Google Scholar 

  31. Saddekni S, Sos TA, Sniderman KW et al. Optimal injection technique for intravenous digital subtraction angiography. Radiology 1984; 150: 655–659.

    PubMed  Google Scholar 

  32. Eskridge JM, Becker GJ, Rabe FE et al. Digital vascular imaging: Practical aspects. Radiology 1983; 148: 703–705.

    PubMed  Google Scholar 

  33. Hetzel PS, Swan HJC, Wood EH. Influence of injection site on arterial dilution curves of T-1824. J Appl Physiol 1954–1955; 7: 66–72.

    PubMed  Google Scholar 

  34. Rubin DL, Burbank FH, Bradley BR et al. An experimental evaluation of central vs. peripheral injection for intravenous digital subtraction angiography. (IV-DSA). Invest Radiol 1984; 19: 30–35.

    PubMed  Google Scholar 

  35. Drury JK, Gray R, Diamond GA et al. Computer enhanced digital angiography visualizes coronary bypass grafts without need for selective injection. (Abstract) Circulation 1982; 66 (Suppl. II): II-229.

    Google Scholar 

  36. Tobis J, Iseri L, Nalcioglu O et al. Comparison of digital and cineangiography for quantitation of coronar stenoses (Abstract.) Circulation 1983; 68 (Suppl. III: III-41.

    PubMed  Google Scholar 

  37. Nichols AB, Martin EC, Fles TP et al. Validation of the angiographic accuracy of digital left ventriculography. Amer J Cardiol 1983; 51: 224–230.

    PubMed  Google Scholar 

  38. Burbank FHY: Determination of contrast enhancement for intravenous digital subtraction angiography. Invest Radiol 1983; 18: 308–316.

    PubMed  Google Scholar 

  39. Bogren HG, Bursch JH, Brennecke R et al. Intravenous angiocardiography using digital image processing. I. Experience with axial projections in normal pigs. Invest Radiol 1982; 17: 216–223.

    PubMed  Google Scholar 

  40. Kruger RA, Anderson RE, Koehler PR et al. A method for the noninvasive evaluation of cardiovascular dynamics using digital radiographic devices. Radiology 1981; 139: 301–305.

    PubMed  Google Scholar 

  41. Vas R, Diamond GA, Levisman JA et al. Computer-enhanced digital angiography. Clin Cardiol 1982; 5: 318–326.

    PubMed  Google Scholar 

  42. Slutsky RA, Mancini GBJ, Norris S et l. Digital intravenous ventriculography: Comparison of volumes from maskmode and nonsubtracted images with thermodilution and sonocardiometric measurements. Invest Radiol 1983; 18: 327–334.

    PubMed  Google Scholar 

  43. Radtke W, Bursch JH, Brennecke R et al. Visualization of the left ventricular wall by digital angiocardiography. Eur Heart J 1981; 2: 135–142.

    PubMed  Google Scholar 

  44. Radtke W, Bursch JH, Brennecke R et al. Assessment of myocardial mass and infarction size by digital angiocariography. In: Heintzen PH, Brennecke R eds. Digital imaging in cardiovascular radiology. Stuttgart and New York: George Thieme Verlag, 1983; 233–240.

    Google Scholar 

  45. Gerber KH, Slutsky RA, Ashburn WL et al. Detection and assessment of severity of regional ischemic left ventricular dysfunction by digital fluoroscopy. Amer Heart J 1982; 104: 27–35.

    PubMed  Google Scholar 

  46. Carey PH, Slutsky RA, Ashburn WL et al. The validation of cardiac output by digital intravenous ventriculography in dogs: Correlation with thermodilution estimates. Radiology 1982; 143: 623–626.

    PubMed  Google Scholar 

  47. Slutsky RA, Carey PH, Higgins CB. Effects of acute incremental volume overload on cardiac chamber size, function, and the pulmonary circulation: Analysis by digital intravenous angiography. Amer Heart J 1982; 104: 254–262.

    PubMed  Google Scholar 

  48. Goldberg HL, Borer JS, Moses JW et al. Digital subtraction intravenous left ventricular angiography: Comparison with conventional intraventricular angiography. J Amer Coll Cardiol 1983; I: 858–862.

    Google Scholar 

  49. Nissen SE, Booth D, Waters J et al. Evaluation of left ventricular contractile pattern by intravenous digital subtraction ventriculography: Comparison with cineagiography and assessment of interobserver variability. Amer J Cardiol 1983; 52: 1293–1298.

    PubMed  Google Scholar 

  50. Norris SL, Slutsky RA, Mancini GBJ et al. Comparison of digital intravenous ventriculography with direct left ventriculography for quantitation of left ventricular volumes and ejection fractions. Amer J Cardiol 1983; 51: 1399–1403.

    PubMed  Google Scholar 

  51. Tobis JM, Nalcioglu O, Johnston WD et al. Left ventricular imaging with digital subtraction angiography using intravenous contrast injection and fluoroscopic exposure levels. Amer Heart J 1982; 104: 20–27.

    PubMed  Google Scholar 

  52. Vas R, Diamond GA, Forrester JS et al. Computer enhancement of direct and venous-injected left ventricular contrast angiography. Amer Heart J 1981; 102: 719–728.

    PubMed  Google Scholar 

  53. Vas R, Diamond GA, Forrester JS et al. Computer-enhanced digital angiography: Correlation of clinical assessment of left ventricular ejection fraction and regional wall motion. Amer Heart J 1982; 104: 732–739.

    PubMed  Google Scholar 

  54. Felix R, Eichstadt H, Kempter H et al. A comparison of conventional contrast ventriculography and digital subtraction ventriculography. Clin Cardiol 1983; 6: 265–276.

    PubMed  Google Scholar 

  55. Engels PHC, Ludwig JW, Verhoeven LAJ. Left ventricular evaluation by digital video subtraction angiography. Radiology 1982; 144: 471–474.

    PubMed  Google Scholar 

  56. Wasserman AG, Schwartz H, Johnson RA et al. Digital subtraction angiography combined with atrial pacing to detect ischemic zones after myocardial infarction. Circulation 1983; 68 (suppl. III): III-41.

    PubMed  Google Scholar 

  57. Tobis JM, Nalcioglu O, Johnston WD et al. Correlation of 10-milliliter digital subtraction ventriculograms compared with standard cineangiograms. Amer Heart J 1983; 105: 946–952.

    PubMed  Google Scholar 

  58. Seldin DW, Esser PD, Nichols AB et al. Left ventricular volume determined from scintigraphy and digital angiography by a semi-automated geometric method. Radiology 1983; 149: 809–813.

    PubMed  Google Scholar 

  59. Kruger RA, Mistretta CA, Riederer SJ. Physical and technical considerations of computerized transmission fluoroscopy difference image. IEEE Trans Nucl Sci (NS-28). 1978; I: 205–212.

    Google Scholar 

  60. Kruger RA. Image data acquisition, processing, storage and display. Cardiovas Intervent Radiol 1983; 6: 183–186.

    Google Scholar 

  61. Nalcioglua O, Seibert JA, Boone J et al. The effect of physical problems on the determination of ventricular ejection fraction by video densitometry. In: Heintzen PH, Brennecke R, eds. Digital imaging in cardiovascular radiology. Stuttgart and New York: George Thieme Verlag, 1983; 194–215.

    Google Scholar 

  62. Peppler WW, Van Lysel MS, Dobbins JT et al. Progress report on the University of Wisconsin digital video image processor (DVIP II). In: Heintzen PH, Brennecke R, eds. Digital imaging in cardiovascular radiology. Stuttgart and New York: George Thieme Verlag, 1983; 56–66.

    Google Scholar 

  63. Shaw CG, Ergun DL, Myerowitz PD et al. A technique of scatter and glare correction for visodensitometric studies in digital subtraction videoangiography. Radiology 1982; 142: 209–213.

    PubMed  Google Scholar 

  64. Bursch J, Heintzen PH, Simon R. Videodensitometric studies by a new method of quantitating the amount of contrast medium. Eur J Cardiol 1974; I: 437–446.

    Google Scholar 

  65. Tobis J, Nalcioglu O, Seibert JA et al. Measurement of left ventricular ejection fraction by videodensitometric analysis of digital subtraction angiograms. Amer J Cardiol 1983; 52: 871–875.

    PubMed  Google Scholar 

  66. Trenholm BG, Winer DA, Reimer GD et al. Automated ventricular volume calculations from single plane images. Radiology 1974; 112: 299–304.

    PubMed  Google Scholar 

  67. Chaitman BR, DeMoto H, Bristow JD et al. Objective and subjective analysis of left ventricular angiograms. Circulation 1975; 52: 420–425.

    PubMed  Google Scholar 

  68. Mancini GBJ, Norris SL, Peterson KL et al. Quantitative assessment of segmental wall motion abnormalities at rest and after atrial pacing using digital intravenous ventriculography. J Amer Coll Cardiol 1983; 2: 70–76.

    Google Scholar 

  69. Mancini GBJ, LeFree MT, Vogel RA. Curvature analysis of normal ventriculograms: Fundamental framework for the assessment of shape changes in man. Comput Cardiol 1985; 141–144.

  70. Goldberg HL, Moses JW, Borer JS et al. Exercise left ventriculography utilizing intravenous digital angiography. J Amer Coll Cardiol 1982; 2: 1092–1098.

    Google Scholar 

  71. Tobis J, Nalcioglu O, Johnston WD et al. Digital angiography in assessment of ventricular function and wall motion during pacing in patients with coronary artery disease. Amer J Cardiol 1983; 51: 668–675.

    PubMed  Google Scholar 

  72. Mancini GBJ, Peterson KL, Gregoratos G et al. Effects of atrial pacing on global and regional left ventricular function in coronary heart disease assessed by digital intravenous ventriculography. Amer J Cardiol 1984; 53: 456–461.

    PubMed  Google Scholar 

  73. Johnson RA, Wasserman AG, Leibhoff RH et al. Intravenous digital left ventriculography at rest and with atrial pacing as a screening procedure for coronary artery disease. J Amer Coll Cardiol 1983; 2: 905–910.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, R.A. Left ventricular imaging by digital subtraction angiography. Int J Cardiac Imag 3, 29–38 (1988). https://doi.org/10.1007/BF01801642

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01801642

Keywords

Navigation