Human biochemical genetics of enzyme proteins in the new age of molecular genetics

  • D. M. Swallow
  • D. A. Hopkinson
The 23rd Annual Symposium Of The SSIEM: Liverpool 1985


Advances in protein biochemistry and immunology have had a major impact on the biochemical and genetical analysis of human proteins and have had applications in the analysis of the primary defects in metabolic disorders, as well as in cDNA cloning. The development and expansion of somatic cell genetic techniques has complemented conventional population and family study genetic methods. A large number of mammalian proteins undergo complex processing to achieve the synthesis of the biologically active protein. Much of this processing is under genetic control. Elucidation of these complexities requires a combination of biochemical, immunological and genetical approaches to determine the nature of the events involved.


Internal Medicine Genetical Analysis Metabolic Disease Somatic Cell cDNA Cloning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstee, D. J. The blood group MNSs-active sialoglycoproteins.Semin. haematol. 18 (1981) 13–31Google Scholar
  2. D'Azzo, A., Hoogeveen, A., Reuser, A. J. J., Robinson, D. and Galjaard, H. Molecular defect in combined β-galactosidase and neuraminidase deficiency in man.Proc. Natl. Acad. Sci. USA 79 (1982) 4535–4539Google Scholar
  3. D'Azzo, A., Proia, R. L., Kolodny, E. H., Kaback, M. M. and Neufeld, E. F. Biosynthesis assembly and maturation of β-hexosaminidase in variants of Tay-Sachs disease.Am. J. Hum. Genet. 35 (1983) 40AGoogle Scholar
  4. Beratis, N. G., LaBadie, G. U. and Hirschhorn, K. Acid α-glucosidase: kinetic and immunologic properties of enzyme variants in health and disease. In Rattazzi, M. C., Scandalios, J. G. and Whitt, G. S. (eds.)Isozymes: Current Topics in Biological and Medical Research, Vol. 11: Medical and Other Applications, Alan R. Liss, New York, 1983, pp. 25–36Google Scholar
  5. Beratis, N. G., Seegers, W. and Hirschhorn, K. Properties of placental alkaline phosphatase II. Interactions of fast- and slow-migrating components.Biochem. Genet. 5 (1971) 367–377Google Scholar
  6. Blake, M. S., Johnston, K. H., Russell-Jones, G. J. and Gotschlich, E. C. A rapid sensitive method for detection of alkaline phosphatase-conjugated antibody on Western blots.Anal. Biochem. 136 (1984) 175–179Google Scholar
  7. Brennan, S. O. and Carrell, R. W. A circulating variant of human pro-albumin.Nature 274 (1978) 908–909Google Scholar
  8. Burg, J., Conzelmann, E., Sandhoff, K., Solomon, E. and Swallow, D. M. Mapping of the gene coding for the human GM2 activator protein to chromosome 5.Ann. Hum. Genet. 49 (1985) 41–45Google Scholar
  9. Cavalli-Sforza, L. L., Daiger, S. P. and Rummel, D. P. Detection of genetic variation with radioactive ligands. I. Electrophoretic screening of plasma proteins with a selected panel of compounds.Am. J. Hum. Genet. 29 (1977) 581–592Google Scholar
  10. Conzelmann, E., Burg, J., Stephan, G. and Sandhoff, K. Complexing of glycolipids and their transfer between membranes by the activator protein for degradation of lysosomal ganglioside GM2.Eur. J. Biochem. 123 (1982) 455–464Google Scholar
  11. Conzelmann, E. and Sandhoff, K. AB variant of infantile GM2 gangliosidosis: deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2.Proc. Natl. Acad. Sci. USA 75 (1978) 3979–3983Google Scholar
  12. Conzelmann, E. and Sandhoff, K. Partial enzyme deficiencies: residual activities and the development of neurological disorders.Dev. Neurosci. 6 (1983/84) 58–71Google Scholar
  13. Fukushima, H., de Wet, J. R. and O'Brien, J. S. Molecular cloning of a cDNA for human α-L-fucosidase.Proc. Natl. Acad. Sci. USA 82 (1985) 1262–1265Google Scholar
  14. Geiger, B., Arnon, R. and Sandhoff K. Immunochemical and biochemical investigation of hexosaminidase S.Am. J. Hum. Genet. 29 (1977) 508–522Google Scholar
  15. Geiger, B., Ben-Yoseph, Y. and Arnon, R. Purification of human hexosaminidases A and B affinity chromatographyFEBS Lett. 45 (1974) 276–281Google Scholar
  16. Gershoni, J. M. and Palade, G. E. Protein blotting: principles and applications.Anal. Biochem. 131 (1983) 1–15Google Scholar
  17. Gordon-Weeks, P. R. and Harding, S. Major differences in the concanavalin A binding glycoproteins of post-synaptic densities from rat forebrain and cerebellum.Brain Res. 277 (1983)380–385Google Scholar
  18. Gruppuso, P. A., Gorden, P., Kahn, C. R., Cornblath, M., Zeller, W. P. and Schwartz, R. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin.N. Engl. J. Med. 311 (1984) 629–634Google Scholar
  19. Harris, H. Monoclonal antibodies to enzymes. In Kennett, R. H., Bechtol, K. B. and McKearn, T. J. (eds.)Monoclonal Antibodies and Functional Cell Lines, Plenary, New York, 1984, pp. 36–65Google Scholar
  20. Hasilik, A. and von Figura, K. Oligosaccharides in lysosomal enzymes.Eur. J. Biochem. 121 (1981) 125–129Google Scholar
  21. Hasilik, A. and Neufeld, E. F. Biosynthesis of lysosomal enzymes in fibroblasts: synthesis as precursors of higher molecular weight.J. Biol. Chem. 255 (1980a) 4937–4945Google Scholar
  22. Hasilik, A. and Neufeld, E. F. Biosynthesis of lysosomal enzymes in fibroblasts: phosphorylation of mannose residues.J. Biol. Chem. 255 (1980b) 4946–4950Google Scholar
  23. Hauri, H.-P., Roth, J., Sterchi, E. and Lentze, M. Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency.Proc. Natl. Acad. Sci. USA 82 (1985b) 4423–4427Google Scholar
  24. Hauri, H.-P., Sterchi, E. E., Bienz, D., Fransen, J. A. M. and Marxer, A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells.J. Cell Biol. 101 (1985a) 838–851Google Scholar
  25. Hercz, A., Katona, E., Cutz, E., Wilson, J. R. and Barton, M. α1-Antitrypsin: the presence of excess mannose in the Z variant isolated from liver.Science 201 (1978) 1229–1232Google Scholar
  26. Hollister, D. W., Byers, P. H. and Holbrook, K. A. Genetic disorders of collagen metabolism, In Harris, H and Hirschhorn, K. (eds.)Advances in Human Genetics, Vol. 12, Plenum, New York and London, 1982, pp. 1–87Google Scholar
  27. Hopkinson, D. A. and Harris, H. The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis. Studies on red cell adenosine deaminase.Ann. Hum. Genet. 33 (1969) 81–87Google Scholar
  28. Huttner, W. B. Sulphation of tyrosine residues — a widespread modification of proteins.Nature 299 (1982) 273–276Google Scholar
  29. Ikuta, T., Fujiyoshi, T., Kurachi, K. and Yoshida, A. Molecular cloning of a full-length cDNA for human alcohol dehydrogenase.Proc. Natl. Acad. Sci. USA 82 (1985) 2703–2707Google Scholar
  30. Kahn, A., Cottreau, D., Daegelen, D. and Dreyfus, J-C. Cell-free translation of messenger RNAs from adult and fetal human muscle: characterization of neosynthesized glycogen phosphorylase, phosphofructokinase and glucose phosphate isomerase.Eur. J. Biochem. 116 (1981) 7–12Google Scholar
  31. Karlsson, S., Swallow, D. M., Griffiths, B., Corney, G., Hopkinson, D. A., Dawnay, A. and Cartron, J. P. A genetic polymorphism of a human urinary mucin.Ann. Hum. Genet. 47 (1983) 263–269Google Scholar
  32. Keller, P. J., Kauffman, D. L., Allan, B. J. and Williams, B. L. Further studies on the structural differences between the isoenzymes of human parotid amylase.Biochemistry 10 (1971) 4867–4874Google Scholar
  33. Kielty, C. M., Povey, S. and Hopkinson, D. A. Regulation of expression of liver-specific enzymes. II. Activation and chromosomal localization of soluble glutamate-pyruvate transaminase.Ann. Hum. Genet. 46 (1982a) 135–143Google Scholar
  34. Kielty, C. M., Povey, S. and Hopkinson, D. A. Regulation of expression of liver-specific enzymes. III. Further analysis of a series of rat hepatoma × human somatic cell hybrids.Ann. Hum. Genet. 46 (1982b) 307–327Google Scholar
  35. Konings, A., Hupkes, P., Versteeg, R., Grosveld, G., Reuser, A. and Galjaard, H. Cloning a cDNA for the lysosomal α-glucosidase.Biochem. Biophys. Res. Comm. 119 (1984) 252–258Google Scholar
  36. Kytzia, H.-J. and Sandhoff, K. Evidence for two different active sites on human β-hexosaminidase A: interaction of GM2 activator protein with β-hexosaminidase A.J. Biol. Chem. 260 (1985) 7568–7572Google Scholar
  37. Lange, L. G. and Vallee, B. L. Double ternary complex affinity chromatography: preparation of alcohol dehydrogenase.Biochemistry 15 (1976) 4681–4686Google Scholar
  38. Lichtenstein, J. R., Martin, G. R., Kohn, L. D., Byers, P. H. and McKusick, V. A. Defect in conversion of procollagen to collagen in a form of the Ehlers-Danlos syndrome.Science 182 (1973) 298–300Google Scholar
  39. Lloyd, J. C., Isenberg, H., Hopkinson, D. A. and Edwards, Y. H. Isolation of a cDNA clone for the human muscle specific carbonic anhydrase, CAIII.Ann. Hum. Genet. 49 (1985) 241–251Google Scholar
  40. McAlpine, P. J., Shows, T. B., Miller, R. L. and Pakstis, A. J. The 1985 catalogue of mapped human genetic markers and report of the nomenclature committee. Human Gene Mapping VIII, Helsinki Conference (1985). Reprinted inCytogenet. Cell Genet. 40 (1985) 8–66Google Scholar
  41. Mahuran, D., Novak, A. and Lowden, A. The lysosomal hexosaminidase isozymes. In Rattazzi, M. C., Scandalios, J. G. and Whitt, G. S. (eds.)Isozymes: Current Topics in Biological and Medical Research, Vol. 12 Alan R. Liss, New York, 1984, pp. 229–288Google Scholar
  42. Michelson, A. M., Markham, A. F. and Orkin, S. H. Isolation and DNA sequence of full-length cDNA clone for human X chromosome-encoded phosphoglycerate kinase.Proc. Natl. Acad. Sci. 80 (1983) 472–476Google Scholar
  43. Moeremans, M., Daneels, G., Van Dijck, A., Langanger, G. and De Mey, J. Sensitive visualization of antigen-antibody reactions in dot and blot immune overlay assays with Immunogold and Immunogold silver staining.J. Immunol. Meth. 74 (1984) 353–360Google Scholar
  44. Myerowitz, R. and Proia, R. L. cDNA clone for the α-chain of human β-hexosaminidase: deficiency of α-chain mRNA in Ashkenazi Tay-Sachs fibroblasts.Proc. Natl. Acad. Sci. USA 81 (1984) 5394–5398Google Scholar
  45. Naylor, S. L. Bioautographic visualization of enzymes. In Rattazzi, M. C., Scandalios, J. G. and Whitt, G. S. (eds.)Isozymes: Current Topics in Biological and Medical Research, Vol. 4, Alan R. Liss, New York, 1980, pp. 69–106Google Scholar
  46. Neufeld, E. F. Recognition and processing of lysosomal enzymes in cultured fibroblasts. In Callahan, J. W. and Lowden, J. A. (eds.)Lysosomes and Lysosomal Diseases, Raven Press, New York, 1981, pp. 115–129Google Scholar
  47. Nickel, B. E. and McAlpine, P. J. Extension of human acid α-glucosidase polymorphism by isoelectric focusing in polyacrylamide gel.Ann. Hum. Genet. 46 (1982) 97–103Google Scholar
  48. Noyes, C. M., Griffith, M. J., Roberts, H. R. and Lundblad, R. L. Identification of the molecular defect in factor IX Chapel Hill: substitution of histidine for arginine at position 145.Proc. Natl. Acad. Sci. USA 80 (1983) 4200–4202Google Scholar
  49. Potter, J., Ho, M.-W., Bolton, H., Furth, A. J., Swallow, D. M. and Griffiths, B. Human lactase and the molecular basis of lactase persistence.Biochem. Genet. 23 (1985) 423–439Google Scholar
  50. Proia, R. L., D'Azzo, A. and Neufeld, E. F. Association of α- and β- subunits during the biosynthesis of β-hexosaminidase in cultured human fibroblasts.J. Biol. Chem. 259 (1984) 3350–3354Google Scholar
  51. Proia, R. L. and Neufeld, E. F. Synthesis of β-hexosaminidase in cell-free translation and in intact fibroblasts: an insoluble precursor α chain in a rare form of Tay-Sachs disease.Proc. Natl. Acad. Sci. USA 79 (1982) 6360–6364Google Scholar
  52. Reitman, M. L., Varki, A. and Kornfeld, S. Fibroblasts from a patient with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5′-diphosphate-N-acetylglucosamine: glycoproteinN-acetyl-glucosaminylphosphotransferase activity.J. Clin. Invest. 67 (1981) 1574–1579Google Scholar
  53. Reuser, A. J. J., Kroos, M., Oude Elferink, R. P. J. and Tager, J. M. Defects in synthesis, phosphorylation and maturation of acid α-glucosidase in glycogenosis type II.J. Biol. Chem. 260 (1985) 8336–8342Google Scholar
  54. Robbins, D. C., Blix, P. M., Rubenstein, A. H., Kanazawa, Y., Kosaka, K. and Tager, H. S. A human proinsulin variant at arginine 65.Nature 291 (1981) 679–681Google Scholar
  55. Secher, D. S. and Burke, D. C. A monoclonal antibody for large-scale purification of human leukocyte interferon.Nature 285 (1980) 446–450Google Scholar
  56. Shows, T. B., Sakaguchi, A. Y. and Naylor, S. L. Mapping the human genome, cloned genes, DNA polymorphisms and inherited disease. In Harris, H. and Hirschhorn, K. (eds.)Advances in Human Genetics, Vol. 12, Plenum Press, New York and London, 1982, pp. 341–452Google Scholar
  57. Smith, M., Povey, S., Arredondo-Vega, F. X., Duester, G., Kielty, C., Jeremiah, S. and Hopkinson, D. A. Mapping of human class 1 alcohol dehydrogenase (ADH). Human Gene Mapping VII, Los Angeles Conference (1983). Reprinted inCytogenet. Cell Genet. 37 (1984) 586Google Scholar
  58. Swallow, D. M., Corney, G. and Harris, H. Acid α-glucosidase: a new polymorphism in man demonstrable by ‘affinity’ electrophoresis.Ann. Hum. Genet. (London) 38 (1975) 391–406Google Scholar
  59. Swallow, D. M., Evans, L. and Hopkinson, D. A. Several of the adenosine deaminase isozymes are glycoproteins.Nature 269 (1977) 261–262Google Scholar
  60. Swallow, D. M., West, L. F. and Van Elsen, A. The role of lysosomal sialidase and β-galactosidase in processing the complex carbohydrate chains on lysosomal enzymes and possibly other glycoproteins.Ann. Hum. Genet. 48 (1984) 215–221Google Scholar
  61. Teige, B., Olaisen, B. and Pedersen, L. Subtyping of haptoglobin — presentation of a new method.Hum. Genet. 70 (1985) 163–167Google Scholar
  62. Teng, Y. S. and Tan, S. G. Acid α-glucosidase in Malaysians: population studies and the occurrence of a new variant.Hum. Hered. 29 (1979) 2–4Google Scholar
  63. Towbin, H. and Gordon, J. Immunoblotting and dot immunobinding — current status and outlook.J. Immunol. Meth. 72 (1984) 313–340Google Scholar
  64. Towbin, H., Staehelin, T. and Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76 (1979) 4350–4354Google Scholar
  65. Turner, B. M. Purification and characterisation of α-L-fucosidase from human placenta.Biochem. Biophys. Acta 578 (1979) 325–336Google Scholar
  66. Vockley, J. and Harris, H. Purification of human adult and foetal intestinal alkaline phosphatases by monoclonal antibody immuno-affinity chromatography.Biochem. J. 217 (1984) 535–541Google Scholar
  67. Voller, A., Bidwell, D. E. and Bartlett, A. The enzyme linked immunosorbent assay (ELISA). Guernsey: Dynatech Europe (1979)Google Scholar
  68. Waheed, A., Steckel, F., Hasilik, A. and von Figura, K. Two allelic forms of human arylsufatase A with different numbers of asparagine-linked oligosaccharides.Am. J. Hum. Genet. 35 (1983) 228–233Google Scholar
  69. Whitehouse, D. B. and Putt, W. Immunological detection of the sixth complement component (C6) following flat bed polyacrylamide gel isoelectric focusing and electrophoretic transfer to nitrocellulose filters.Ann. Hum. Genet. 47 (1983) 1–8Google Scholar
  70. Willard, H. F., Skolnick, M., Pearson, P. L. and Mandel, J. L. Human gene mapping by recombinant DNA techniques. Human Gene Mapping VIII, Helsinki Conference (1985). Reprinted inCytogenet. Cell Genet. 40 (1985) 360–489Google Scholar
  71. Wilson, J. M., Tarr, G. E. and Kelley, W. N. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout.Proc. Natl. Acad. Sci. USA 80 (1983) 870–873Google Scholar
  72. Young, R. A. and Davis, R. W. Yeast RNA polymerase II genes: isolation with antibody probes.Science 222 (1983) 778–782Google Scholar
  73. Zimmerman, M., Mumford, R. A. and Steiner, D. F. (eds.) Precursor processing in the biosynthesis of proteins.Ann. NY Acad. Sci. 343 (1980) 1–449Google Scholar

Copyright information

© SSIEM and MTP Press Limited 1986

Authors and Affiliations

  • D. M. Swallow
    • 1
  • D. A. Hopkinson
    • 1
  1. 1.MRC Human Biochemical Genetics, The Galton LaboratoryUniversity College LondonLondonUK

Personalised recommendations